A Lightweight Hybrid Deep Learning Privacy Preserving Model for FC-Based Industrial Internet of Medical Things
Abstract
:1. Introduction
2. Background and Related Studies
2.1. Smart Contracts
2.2. PoX Consensus Mechanism
2.3. Authorization Consensus Mechanism
2.4. Hybrid Consensus Mechanism
- What are the threats that IIoT will face when blockchains are utilized in their environments?
- How can blockchain transparency impact the exposure of IIoT environments to external threats?
- What are the implications of compromising blockchain nodes within IIoT environments?
2.5. Contribution
3. Methodology
4. Proposed Framework
4.1. Proposed Smart Contracts and Fog Computing
4.2. Proposed Algorithm
Algorithm 1: FC-Average Algorithm |
1: Init: a = 0; 2: for each round t = 1,2,…do 3: select K clients 4: for each K clients do 5: wkt, UpdateClient( ) 6: dkt ← the distance between two classes dataset end for 7: If (dk = t) ←1 8: dk = wk * t ←pk k = 1nk f(dkt) wt1/pkk = 1nkfd kt) 9: end for 10: Updatefunction( ) 11: Initialize local minibatch size L, local epochs E, learning rate 12: for each epoch i E do 13: randomly choose S: based on size L 14: wi ← w1 – w5g(w1:s) 15: end for 16: return i 17: End Procedure 18: End Algorithm |
Algorithm 2: Algorithm Method Evaluation |
1: Enhance Analysis of both the IOMT end 2: Select IOMT node for Transaction selection (Node) 3: Get EMR data, hash, get (EMR) 4: Extract EMRFromRepository from ERM (ERM name) 5: ERM, valid SHA256 CheckHash (ERM, Hash) 6: if ERM is T, then 7: Get the Connent (Connect) 8: Generate Indications (Connect length) 9: Valid Blockchain transaction Valid (i, indications) 10: Del Local EMR delete (EMR) 11: End if (EMR) 12: End 13: End 14: wi ← w1 – w5g(w1:s) |
5. Experimental Setup
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shah, A.A.; Piro, G.; Grieco, L.A.; Boggia, G. A qualitative cross-comparison of emerging technologies for software-defined systems. In Proceedings of the 2019 Sixth International Conference on Software Defined Systems (SDS), Rome, Italy, 10–13 June 2019; pp. 138–145. [Google Scholar]
- Ali, A.; Mehboob, M. Comparative analysis of selected routing protocols for wlan based wireless sensor networks (wsns). In Proceedings of the 2nd International Multi-Disciplinary Conference, Gujrat, Pakistan, 19–20 December 2016; Volume 19, p. 20. [Google Scholar]
- Shah, A.; Piro, G.; Grieco, L.A.; Boggia, G. A review of forwarding strategies in transport software-defined networks. In Proceedings of the 2020 22nd International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 19–23 July 2020; pp. 1–4. [Google Scholar]
- Bruce, R.R.; Cunard, J.P.; Director, M.D. From Telecommunications to Electronic Services: A Global Spectrum of Definitions, Boundary Lines, and Structures; Butterworth-Heinemann: Oxford, UK, 2014. [Google Scholar]
- Gatteschi, V.; Lamberti, F.; Demartini, C.; Pranteda, C.; Santamaría, V. Blockchain and smart contracts for insurance: Is the technology mature enough? Future Internet 2018, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Jia, B.; Zhou, T.; Li, W.; Liu, Z.; Zhang, J. A Blockchain-Based Location Privacy Protection Incentive Mechanism in Crowd Sensing Networks. Sensors 2018, 18, 3894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, K.; Muthukkumarasamy, V. Securing smart cities using blockchain technology. In Proceedings of the 2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Sydney, NSW, Australia, 12–14 December 2016; pp. 1392–1393. [Google Scholar]
- Fernández-Caramés, T.M.; Froiz-Míguez, I.; Blanco-Novoa, O.; Fraga-Lamas, P. Enabling the Internet of Mobile Crowdsourcing Health Things: A Mobile Fog Computing, Blockchain and IoT Based Continuous Glucose Monitoring System for Diabetes Mellitus Research and Care. Sensors 2019, 19, 3319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.; Naveed, M.; Mehboob, M.; Irshad, H.; Anwar, P. An interference aware multi-channel mac protocol for wasn. In Proceedings of the 2017 International Conference on Innovations in Electrical Engineering and Computational Technologies (ICIEECT), Karachi, Pakistan, 5–7 April 2017; pp. 1–9. [Google Scholar]
- Beebeejaun, A. VAT on foreign digital services in Mauritius; a comparative study with South Africa. Int. J. Law Manag. 2020, 63, 239–250. [Google Scholar] [CrossRef]
- Aziz Shah, A.; Piro, G.; Grieco, L.A.; Boggia, G. A quantitative cross-comparison of container networking technologies for virtualized service infrastructures in local computing environments. Trans. Emerg. Telecommun. Technol. 2021, 32, e4234. [Google Scholar] [CrossRef]
- Yazdinejad, A.; Parizi, R.M.; Dehghantanha, A.; Choo, K.-K.R. Blockchain-enabled authentication handover with efficient privacy protection in sdn-based 5g networks. IEEE Trans. Netw. Sci. Eng. 2019, 8, 1120–1123. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kim, S.-H.; Hwang, J.Y.; Seo, C. Efficient Privacy-Preserving Machine Learning for Blockchain Network. IEEE Access 2019, 7, 136481–136495. [Google Scholar] [CrossRef]
- Cirstea, A.; Enescu, F.M.; Bizon, N.; Stirbu, C.; Ionescu, V.M. Blockchain Technology Applied in Health The Study of Blockchain Application in the Health System (II). In Proceedings of the 2018 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Iasi, Romania, 28–30 June 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Yazdinejad, A.; Srivastava, G.; Parizi, R.M.; Dehghantanha, A.; Choo, K.-K.R.; Aledhari, M. Decentralized Authentication of Distributed Patients in Hospital Networks Using Blockchain. IEEE J. Biomed. Health Inform. 2020, 24, 2146–2156. [Google Scholar] [CrossRef]
- Patel, V. A framework for secure and decentralized sharing of medical imaging data via blockchain consensus. Health Inform. J. 2018, 25, 1398–1411. [Google Scholar] [CrossRef]
- El-Rewini, Z.; Sadatsharan, K.; Selvaraj, D.F.; Plathottam, S.J.; Ranganathan, P. Cybersecurity challenges in vehicular communications. Veh. Commun. 2019, 23, 100214. [Google Scholar] [CrossRef]
- Dorri, A.; Kanhere, S.S.; Jurdak, R.; Gauravaram, P. Blockchain for iot security and privacy: The case study of a smart home. In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kona, HI, USA, 13–17 March 2017; pp. 618–623. [Google Scholar]
- Hang, L.; Kim, D.-H. Design and Implementation of an Integrated IoT Blockchain Platform for Sensing Data Integrity. Sensors 2019, 19, 2228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, B.; Kermanshahi, S.K.; Sakzad, A.; Nepal, S. Chameleon Hash Time-Lock Contract for Privacy Preserving Payment Channel Networks. In International Conference on Provable Security; Springer: Cham, Switzerland, 2019; pp. 303–318. [Google Scholar] [CrossRef]
- Hameed, K.; Ali, A.; Naqvi, M.H.; Jabbar, M.; Junaid, M.; Haider, A. Resource management in operating systems-a survey of scheduling algorithms. In Proceedings of the International Conference on Innovative Computing (ICIC), Lanzhou, China, 2–5 August 2016; pp. 2–5. [Google Scholar]
- Dwivedi, A.D.; Srivastava, G.; Dhar, S.; Singh, R. A Decentralized Privacy-Preserving Healthcare Blockchain for IoT. Sensors 2019, 19, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daraghmi, E.-Y.; Daraghmi, Y.-A.; Yuan, S.-M. MedChain: A Design of Blockchain-Based System for Medical Records Access and Permissions Management. IEEE Access 2019, 7, 164595–164613. [Google Scholar] [CrossRef]
- Jung, Y.; Peradilla, M.; Agulto, R. Packet Key-Based End-to-End Security Management on a Blockchain Control Plane. Sensors 2019, 19, 2310. [Google Scholar] [CrossRef] [Green Version]
- Esposito, C.; de Santis, A.; Tortora, G.; Chang, H.; Choo, K.-K.R. Blockchain: A panacea for healthcare cloud-based data security and privacy? IEEE Cloud Comput. 2018, 5, 31–37. [Google Scholar] [CrossRef]
- Kermanshahi, S.K.; Liu, J.K.; Steinfeld, R.; Nepal, S.; Lai, S.; Loh, R.; Zuo, C. Multi-client Cloud-based Symmetric Searchable Encryption. IEEE Trans. Dependable Secur. Comput. 2019, 18, 2419–2437. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, Y. A BAS Algorithm Based Neural Network for Intrusion Detection. In Proceedings of the 2021 11th International Conference on Intelligent Control and Information Processing (ICICIP), Dali, China, 3–7 December 2021; pp. 22–27. [Google Scholar]
- Kermanshahi, S.K.; Liu, J.K.; Steinfeld, R. Multi-user cloud-based secure keyword search. In Australasian Conference on Information Security and Privacy; Springer: Berlin/Heidelberg, Germany, 2017; pp. 227–247. [Google Scholar]
- Kermanshahi, S.K.; Liu, J.K.; Steinfeld, R.; Nepal, S. Generic Multi-keyword Ranked Search on Encrypted Cloud Data. In European Symposium on Research in Computer Security; Springer: Cham, Switzerland, 2019; pp. 322–343. [Google Scholar] [CrossRef]
- Almomani, O. A hybrid model using bio-inspired metaheuristic algorithms for network intrusion detection system. Comput. Mater. Contin. 2021, 68, 409–429. [Google Scholar] [CrossRef]
- Rathi, V.K.; Chaudhary, V.; Rajput, N.K.; Ahuja, B.; Jaiswal, A.K.; Gupta, D.; Elhoseny, M.; Hammoudeh, M. A blockchain-enabled multi domain edge computing orchestrator. IEEE Internet Things Mag. 2020, 3, 30–36. [Google Scholar] [CrossRef]
- Xu, X.; Weber, I.; Staples, M.; Zhu, L.; Bosch, J.; Bass, L.; Pautasso, C.; Rimba, P. A taxonomy of blockchain-based systems for architecture design. In Proceedings of the 2017 IEEE International Conference on Software Architecture (ICSA), Gothenburg, Sweden, 3–7 April 2017; pp. 243–252. [Google Scholar]
- Ayed, A.B. A conceptual secure blockchain-based electronic voting system. Int. J. Netw. Secur. Its Appl. 2017, 9, 1–9. [Google Scholar]
- Wan, Z.; Guan, Z.; Zhou, Y.; Ren, K. zk-AuthFeed: How to Feed Authenticated Data into Smart Contract with Zero Knowledge. In Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July 2019; pp. 83–90. [Google Scholar] [CrossRef]
- Jin, H.; Su, L.; Xiao, H.; Nahrstedt, K. Incentive Mechanism for Privacy-Aware Data Aggregation in Mobile Crowd Sensing Systems. IEEE/ACM Trans. Netw. 2018, 26, 2019–2032. [Google Scholar] [CrossRef]
- Pang, X.; Guo, D.; Wang, Z.; Sun, P.; Zhang, L. Towards fair and efficient task allocation in blockchain-based crowdsourcing. CCF Trans. Netw. 2020, 3, 193–204. [Google Scholar] [CrossRef]
- Ali, A.; Rahim, H.A.; Ali, J.; Pasha, M.F.; Masud, M.; Rehman, A.U.; Chen, C.; Baz, M. A Novel Secure Blockchain Framework for Accessing Electronic Health Records Using Multiple Certificate Authority. Appl. Sci. 2021, 11, 9999. [Google Scholar] [CrossRef]
- Ali, A.; Rahim, H.A.; Pasha, M.F.; Dowsley, R.; Masud, M.; Ali, J.; Baz, M. Security, privacy, and reliability in digital healthcare systems using blockchain. Electronics 2021, 10, 2034. [Google Scholar] [CrossRef]
- Siam, A.I.; Almaiah, M.A.; Al-Zahrani, A.; Elazm, A.A.; El Banby, G.M.; El-Shafai, W.; El-Samie, F.E.A.; El-Bahnasawy, N.A. Secure Health Monitoring Communication Systems Based on IoT and Cloud Computing for Medical Emergency Applications. Comput. Intell. Neurosci. 2021, 2021, 8016525. [Google Scholar] [CrossRef]
- Qasem, M.H.; Obeid, N.; Hudaib, A.; Almaiah, M.A.; Al-Zahrani, A.; Al-Khasawneh, A. Multi-agent system combined with distributed data mining for mutual collaboration classification. IEEE Access 2021, 9, 70531–70547. [Google Scholar] [CrossRef]
- Almaiah, M.A. Almaiah, M.A. A new scheme for detecting malicious attacks in wireless sensor networks based on blockchain technology. In Artificial Intelligence and Blockchain for Future Cybersecurity Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 217–234. [Google Scholar]
- Almaiah, M.A.; Al-Zahrani, M. Multilayer neural network based on MIMO and channel estimation for impulsive noise environment in mobile wireless networks. Int. J. Adv. Trends Comput. Sci. Eng. 2020, 9, 315–321. [Google Scholar] [CrossRef]
- Ababneh, J.; Almomani, O. Survey of Error Correction Mechanisms for Video Streaming over the Internet. Int. J. Adv. Comput. Sci. Appl. 2014, 5, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Pasha, M.F.; Fang, O.H.; Khan, R.; Almaiah, M.A.; KAl Hwaitat, A. Big Data Based Smart Blockchain for Information Retrieval in Privacy-Preserving Healthcare System. In Big Data Intelligence for Smart Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 279–296. [Google Scholar]
- Almaiah, M.A.; Hajjej, F.; Ali, A.; Pasha, M.F.; Almomani, O. A Novel Hybrid Trustworthy Decentralized Authentication and Data Preservation Model for Digital Healthcare IoT Based CPS. Sensors 2022, 22, 1448. [Google Scholar] [CrossRef]
- Ali, A.; Almaiah, M.A.; Hajjej, F.; Pasha, M.F.; Fang, O.H.; Khan, R.; Teo, J.; Zakarya, M. An Industrial IoT-Based Blockchain-Enabled Secure Searchable Encryption Approach for Healthcare Systems Using Neural Network. Sensors 2022, 22, 572. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Hajjej, F.; Ali, A.; Pasha, M.F.; Almomani, O. An AI-Enabled Hybrid Lightweight Authentication Model for Digital Healthcare Using Industrial Internet of Things Cyber-Physical Systems. Available online: https://www.researchgate.net/publication/358575824_An_AI-Enabled_Hybrid_Lightweight_Authentication_Model_for_Digital_Healthcare_Using_Industrial_Internet_of_Things_Cyber-Physical_Systems (accessed on 12 February 2022).
- Qasem, M.H.; Hudaib, A.; Obeid, N.; Almaiah, M.A.; Almomani, O.; Al-Khasawneh, A. Multi-agent Systems for Distributed Data Mining Techniques: An Overview. In Big Data Intelligence for Smart Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 57–92. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Al-Zahrani, A.; Almomani, O.; Alhwaitat, A.K. Classification of cyber security threats on mobile devices and applications. In Artificial Intelligence and Blockchain for Future Cybersecurity Applications; Springer: Cham, Switzerland, 2021; pp. 107–123. [Google Scholar]
- Bubukayr, M.A.; Almaiah, M.A. Cybersecurity concerns in smart-phones and applications: A survey. In Proceedings of the 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 14 July 2021; pp. 725–731. [Google Scholar]
- Al Nafea, R.; Almaiah, M.A. Cyber security threats in cloud: Literature review. In Proceedings of the 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 14 July 2021; pp. 779–786. [Google Scholar]
- Almomani, O.; Almaiah, M.A.; Alsaaidah, A.; Smadi, S.; Mohammad, A.H.; Althunibat, A. Machine Learning Classifiers for Network Intrusion Detection System: Comparative Study. In Proceedings of the 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 14 July 2021; pp. 440–445. [Google Scholar]
- Alamer, M.; Almaiah, M.A. Cybersecurity in Smart City: A systematic mapping study. In Proceedings of the 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 14 July 2021; pp. 719–724. [Google Scholar]
- Khan, M.N.; Rahman, H.U.; Almaiah, M.A.; Khan, A.; Raza, M.; Al-Zahrani, M.; Almomani, O.; Khan, R. Improving Energy Efficiency With Content-Based Adaptive and Dynamic Scheduling in Wireless Sensor Networks. IEEE Access 2020, 8, 176495–176520. [Google Scholar] [CrossRef]
- Adil, M.; Almaiah, M.A.; Omar Alsayed, A.; Almomani, O. An anonymous channel categorization scheme of edge nodes to detect jamming attacks in wireless sensor networks. Sensors 2020, 20, 2311. [Google Scholar] [CrossRef] [Green Version]
- Al Hwaitat, A.K.; Almaiah, M.A.; Almomani, O.; Al-Zahrani, M.; Al-Sayed, R.M.; Asaifi, R.M.; Adhim, K.K.; Althunibat, A.; Alsaaidah, A. Improved security particle swarm optimization (PSO) algorithm to detect radio jamming attacks in mobile networks. Quintana 2020, 11, 614–624. [Google Scholar] [CrossRef]
- Adil, M.; Khan, R.; Almaiah, M.A.; Al-Zahrani, M.; Zakarya, M.; Amjad, M.S.; Ahmed, R. MAC-AODV Based Mutual Authentication Scheme for Constraint Oriented Networks. IEEE Access 2020, 8, 44459–44469. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Dawahdeh, Z.; Almomani, O.; Alsaaidah, A.; Al-Khasawneh, A.; Khawatreh, S. A new hybrid text encryption approach over mobile ad hoc network. Int. J. Electr. Comput. Eng. 2020, 10, 6461–6471. [Google Scholar] [CrossRef]
- Adil, M.; Khan, R.; Almaiah, M.A.; Bin Sawad, M.; Ali, J.; Al Saaidah, A.; Ta, Q.T.H. An Efficient Load Balancing Scheme of Energy Gauge Nodes to Maximize the Lifespan of Constraint Oriented Networks. IEEE Access 2020, 8, 148510–148527. [Google Scholar] [CrossRef]
- Adil, M.; Khan, R.; Ali, J.; Roh, B.-H.; Ta, Q.T.H.; Almaiah, M.A. An Energy Proficient Load Balancing Routing Scheme for Wireless Sensor Networks to Maximize Their Lifespan in an Operational Environment. IEEE Access 2020, 8, 163209–163224. [Google Scholar] [CrossRef]
- AlMedires, M.; AlMaiah, M. Cybersecurity in Industrial Control System (ICS). In Proceedings of the 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 14 July 2021; pp. 640–647. [Google Scholar]
- Almudaires, F.; Almaiah, M. Data an overview of cybersecurity threats on credit card companies and credit card risk mitigation. In Proceedings of the 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 14 July 2021; pp. 732–738. [Google Scholar]
- Amaiah, A.; Almomani, O. An investigation of digital forensics for shamoon attack behaviour in FOG computing and threat intelligence for incident response. J. Theor. Appl. Inf. Technol. 2020, 15, 98. [Google Scholar]
- Almomani, O. A feature selection model for network intrusion detection system based on PSO, GWO, FFA and GA algorithms. Symmetry 2020, 12, 1046. [Google Scholar] [CrossRef]
- Sabireen, H.; Neelanarayanan, V. A review on fog computing: Architecture, fog with IoT, algorithms and research challenges. Ict Express. 2021, 7, 162–176. [Google Scholar]
- Buraga, S.C.; Amariei, D.; Dospinescu, O. An OWL-Based Specification of Database Management Systems. Comput. Mater. Contin. 2022, 70, 5537–5550. [Google Scholar] [CrossRef]
- Samann, F.E.; Zeebaree, S.R.; Askar, S. IoT provisioning QoS based on cloud and fog computing. J. Appl. Sci. Technol. Trends 2021, 2, 29–40. [Google Scholar] [CrossRef]
Component Name | Description | Types |
---|---|---|
Hardware | Raspberry Pi | Hard |
Memory | 1 GB | RAM |
OS | Android | V.8 |
Language Tool | Java | Hyperledger |
Simulation Tool | Mat lab | V.2020 |
Design Tool | Rational Rose | |
Editing Tool | Latex | V3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almaiah, M.A.; Ali, A.; Hajjej, F.; Pasha, M.F.; Alohali, M.A. A Lightweight Hybrid Deep Learning Privacy Preserving Model for FC-Based Industrial Internet of Medical Things. Sensors 2022, 22, 2112. https://doi.org/10.3390/s22062112
Almaiah MA, Ali A, Hajjej F, Pasha MF, Alohali MA. A Lightweight Hybrid Deep Learning Privacy Preserving Model for FC-Based Industrial Internet of Medical Things. Sensors. 2022; 22(6):2112. https://doi.org/10.3390/s22062112
Chicago/Turabian StyleAlmaiah, Mohammed Amin, Aitizaz Ali, Fahima Hajjej, Muhammad Fermi Pasha, and Manal Abdullah Alohali. 2022. "A Lightweight Hybrid Deep Learning Privacy Preserving Model for FC-Based Industrial Internet of Medical Things" Sensors 22, no. 6: 2112. https://doi.org/10.3390/s22062112
APA StyleAlmaiah, M. A., Ali, A., Hajjej, F., Pasha, M. F., & Alohali, M. A. (2022). A Lightweight Hybrid Deep Learning Privacy Preserving Model for FC-Based Industrial Internet of Medical Things. Sensors, 22(6), 2112. https://doi.org/10.3390/s22062112