Permittivity-Based Water Content Calibration Measurement in Wood-Based Cultural Heritage: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Setup
- an open-ended coaxial probe (OECP),
- a WR-430 waveguide,
- a WR-90 waveguide.
2.2. Wood Sample
- Fir (Abies alba Mill., 1759),
- Poplar (Populus alba L. 1753),
- Beech (Fagus sylvatica L., 1753),
- Oak (Quercus petraea (Matt.) Liebl).
- Four samples were cut to be inserted in the WR-430 waveguide with a length L = 109.2 mm, a width W = 54 mm, and a thickness T = 15 mm. All samples are cut along the same grain line.
- Four samples were cut to be inserted in the WR-90 waveguide with a length l = 22.2 mm, a width w = 10 mm, and a thickness t = 8 mm. All samples are cut along the same grains line and the grain of the larger samples.
2.3. Moisturing and Weighing Procedure
3. Results and Discussions
3.1. OECP Results
3.2. Waveguide Results
3.3. Calibration Results
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pavlogeorgatos, G. Environmental Parameters in Museums. Build. Environ. 2003, 38, 1457–1462. [Google Scholar] [CrossRef]
- Marconi, E.; Tuti, S.; Fidanza, M.R.; Leccese, F.; Galetti, A.; Geminiani, F. A Novel Approach for In-Situ Assessment of the Efficacy of Biocides on Building of Historical Interest by Bioluminescence. In Proceedings of the 2019 IMEKO TC4 International Conference on Metrology for Archaeology and Cultural Heritage, MetroArchaeo, Florence, Italy, 4–6 December 2019; pp. 429–434. [Google Scholar]
- Moron, C.; Garcia-Fuentevilla, L.; Garcia, A.; Moron, A. Measurement of Moisture in Wood for Application in the Restoration of Old Buildings. Sensors 2016, 16, 697. [Google Scholar] [CrossRef] [PubMed]
- Dietsch, P.; Franke, S.; Franke, B.; Gamper, A.; Winter, S. Methods to Determine Wood Moisture Content and Their Applicability in Monitoring Concepts. J. Civ. Struct. Health Monit. 2015, 5, 115–127. [Google Scholar] [CrossRef]
- Su, S.L.; Singh, D.N.; Baghini, M.S. A Critical Review of Soil Moisture Measurement. Measurement 2014, 54, 92–105. [Google Scholar] [CrossRef]
- Camuffo, D. Measuring Time of Wetness and Moisture in Materials. In Microclimate for Cultural Heritage; Elsevier: Amsterdam, The Netherlands, 2019; pp. 459–482. [Google Scholar] [CrossRef]
- Torgovnikov, G.I. Dielectric Properties of Wood-Based Materials. In Dielectric Properties of Wood and Wood-Based Materials; Springer: Berlin/Heidelberg, Germany, 1993; pp. 135–159. [Google Scholar]
- Niemz, P.; Mannes, D. Non-Destructive Testing of Wood and Wood-Based Materials. J. Cult. Herit. 2012, 13, S26–S34. [Google Scholar] [CrossRef]
- Łukawski, D.; Dudkowiak, A.; Janczak, D.; Lekawa-Raus, A. Preparation and Applications of Electrically Conductive Wood Layered Composites. Compos. A Appl. Sci. Manuf. 2019, 127, 105656. [Google Scholar] [CrossRef]
- Larsen, P.K. Determination of Water Content in Brick Masonry Walls Using a Dielectric Probe. J. Archit. Conserv. 2012, 18, 47–62. [Google Scholar] [CrossRef]
- Slávik, R.; Čekon, M.; Štefaňák, J. Nondestructive Indirect Approach to Long-Term Wood Moisture Monitoring Based on Electrical Methods. Materials 2019, 12, 2373. [Google Scholar] [CrossRef] [Green Version]
- Aichholzer, A.; Schuberth, C.; Mayer, H.; Arthaber, H. Microwave Testing of Moist and Oven-Dry Wood to Evaluate Grain Angle, Density, Moisture Content and the Dielectric Constant of Spruce from 8 GHz to 12 GHz. Eur. J. Wood Wood Prod. 2018, 76, 89–103. [Google Scholar] [CrossRef] [Green Version]
- Piuzzi, E.; Cannazza, G.; Cataldo, A.; de Benedetto, E.; de Giorgi, L.; Frezza, F.; Leucci, G.; Pisa, S.; Pittella, E.; Prontera, S.; et al. A Comparative Assessment of Microwave-Based Methods for Moisture Content Characterization in Stone Materials. Measurement 2018, 114, 493–500. [Google Scholar] [CrossRef]
- Aichholzer, A.; Arthaber, H.; Schuberth, C.; Mayer, H. Non-Destructive Evaluation of Grain Angle, Moisture Content and Density of Spruce with Microwaves. Eur. J. Wood Wood Prod. 2013, 71, 779–786. [Google Scholar] [CrossRef]
- Cataldo, A.; de Benedetto, E.; Cannazza, G.; Piuzzi, E.; Pittella, E. TDR-Based Measurements of Water Content in Construction Materials for In-the-Field Use and Calibration. IEEE Trans. Instrum. Meas. 2018, 67, 1230–1237. [Google Scholar] [CrossRef]
- Černý, R. Time-Domain Reflectometry Method and Its Application for Measuring Moisture Content in Porous Materials: A Review. Measurement 2009, 42, 329–336. [Google Scholar] [CrossRef]
- Dahlen, J.; Schimleck, L.; Schilling, E. Modeling and Monitoring of Wood Moisture Content Using Time-Domain Reflectometry. Forests 2020, 11, 479. [Google Scholar] [CrossRef]
- Rodrigues, B.P.; Senalik, C.A.; Wu, X.; Wacker, J. Use of Ground Penetrating Radar in the Evaluation of Wood Structures: A Review. Forests 2021, 12, 492. [Google Scholar] [CrossRef]
- Casieri, C.; Senni, L.; Romagnoli, M.; Santamaria, U.; de Luca, F. Determination of Moisture Fraction in Wood by Mobile NMR Device. J. Magn. Reson. 2004, 171, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Barreira, E.; Almeida, R.M.S.F.; Moreira, M. An Infrared Thermography Passive Approach to Assess the Effect of Leakage Points in Buildings. Energy Build. 2017, 140, 224–235. [Google Scholar] [CrossRef]
- Marynowicz, A.; Kucharczyk, A. Determination of the Water Absorption and Water Diffusion Coefficients by Means of Infrared Thermography Measurements. Measurement 2021, 185, 110054. [Google Scholar] [CrossRef]
- Aguilar-Castro, K.M.; Flores-Prieto, J.J.; Macías-Melo, E.V. Near Infrared Reflectance Spectroscopy: Moisture Content Measurement for Ceramic Plaster. J. Mech. Sci. Technol. 2014, 28, 293–300. [Google Scholar] [CrossRef]
- Güneyli, H.; Karahan, S.; Güneyli, A.; Yapιcι, N. Water Content and Temperature Effect on Ultrasonic Pulse Velocity of Concrete. Russ. J. Nondestruct. Test. 2017, 53, 159–166. [Google Scholar] [CrossRef]
- Lencis, U.; Udris, A.; Korjakins, A. Moisture Effect on the Ultrasonic Pulse Velocity in Concrete Cured under Normal Conditions and at Elevated Temperature. Constr. Sci. 2013, 14, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Wang, S.; Du, X.; Zhao, P.; Lu, T.; Yang, H.; Chen, F.Y. Health Detection Techniques for Historic Structures. Mater. Test. 2021, 63, 855–864. [Google Scholar] [CrossRef]
- D’Alvia, L.; Pittella, E.; Rizzuto, E.; Piuzzi, E.; del Prete, Z. A Portable Low-Cost Reflectometric Setup for Moisture Measurement in Cultural Heritage Masonry Unit. Measurement 2022, 189, 110438. [Google Scholar] [CrossRef]
- Shen, J.; Schajer, G.; Parker, R. Theory and Practice in Measuring Wood Grain Angle Using Microwaves. IEEE Trans. Instrum. Meas. 1994, 43, 803–809. [Google Scholar] [CrossRef]
- Razafindratsima, S.; Sbartaï, Z.M.; Demontoux, F. Permittivity Measurement of Wood Material over a Wide Range of Moisture Content. Wood Sci. Technol. 2017, 51, 1421–1431. [Google Scholar] [CrossRef]
- Mai, T.C.; Razafindratsima, S.; Sbartaï, Z.M.; Demontoux, F.; Bos, F. Non-Destructive Evaluation of Moisture Content of Wood Material at GPR Frequency. Constr. Build. Mater. 2015, 77, 213–217. [Google Scholar] [CrossRef]
- Sahin, H.; Ay, N. Dielectric Properties of Hardwood Species at Microwave Frequencies. J. Wood Sci. 2004, 50, 375–380. [Google Scholar] [CrossRef]
- WiMo. Hardware Manual for MiniVNA Tiny; 2014; pp. 1–2. Available online: https://www.wimo.com/media/manuals/MRS/MiniVNA_Tiny_Antennenanalysator_Antenna-Analyzer_Hardware-Manual_EN.pdf (accessed on 7 March 2022).
- Pico Technology. Hardware Manual for PicoVNA; Pico Technology Ltd.: St Neots, UK, 2020. [Google Scholar]
- Piuzzi, E.; Cannazza, G.; Cataldo, A.; Chicarella, S.; de Benedetto, E.; Frezza, F.; Pisa, S.; Prontera, S.; Timpani, F. Measurement System for Evaluating Dielectric Permittivity of Granular Materials in the 1.7–2.6-GHz Band. IEEE Trans. Instrum. Meas. 2016, 65, 1051–1059. [Google Scholar] [CrossRef]
- Kolář, T.; Dobrovolný, P.; Szabó, P.; Mikita, T.; Kyncl, T.; Kyncl, J.; Sochová, I.; Rybníček, M. Wood Species Utilization for Timber Constructions in the Czech Lands over the Period 1400–1900. Dendrochronologia 2021, 70, 125900. [Google Scholar] [CrossRef]
- Lauw, A.; Beuting, M.; Pereira, H. Violins and Cellos from Portuguese Collections. A Tree Ring Study as a Historical Source of the Portuguese Heritage. J. Cult. Herit. 2021, 48, 161–170. [Google Scholar] [CrossRef]
- Mazzanti, P.; Togni, M.; Uzielli, L. Drying Shrinkage and Mechanical Properties of Poplar Wood (Populus Alba, L.) across the Grain. J. Cult. Herit. 2012, 13, S85–S89. [Google Scholar] [CrossRef]
- Irbe, I.; Karadelev, M.; Andersone, I.; Andersons, B. Biodeterioration of External Wooden Structures of the Latvian Cultural Heritage. J. Cult. Herit. 2012, 13, S79–S84. [Google Scholar] [CrossRef]
- EN 16682:2017; Conservation of Cultural Heritage—Methods of Measurement of Moisture Content, or Water Content, in Materials Constituting Immovable Cultural Heritage. European Committee for Standardization (CEN): Brussels, Belgium, 2017.
Parameter | Fir 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
θv (%) | 0.0% | 1.9% | 2.2% | 2.7% | 3.2% | 3.7% | 3.9% | 4.2% | 4.5% |
a | −0.53 | −0.47 | −0.45 | −0.38 | −0.34 | −0.32 | -0.29 | −0.27 | −0.30 |
b | 2.52 | 2.73 | 2.76 | 2.79 | 2.86 | 2.89 | 2.969 | 2.986 | 3.14 |
R2 | 0.999 | 0.998 | 0.991 | 0.986 | 0.980 | 0.975 | 0.958 | 0.941 | 0.932 |
Parameter | Poplar1 | ||||||||
θv (%) | 0.0% | 0.9% | 1.6% | 2.2% | 2.7% | 3.1% | 4.0% | ||
a | −0.77 | −0.86 | −0.86 | −0.88 | −0.87 | −0.84 | −0.80 | ||
b | 3.26 | 3.44 | 3.53 | 3.67 | 3.77 | 3.83 | 3.97 | ||
R2 | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 | 0.998 | 0.998 | ||
Parameter | Beech1 | ||||||||
θv (%) | 0.0% | 0.7% | 1.3% | 1.7% | 2.0% | 2.3% | 2.7% | 4.5% | |
a | −0.90 | −0.89 | −0.83 | −0.79 | −0.76 | −0.81 | −0.77 | −0.60 | |
b | 3.82 | 3.94 | 3.99 | 4.01 | 4.02 | 4.14 | 4.16 | 4.34 | |
R2 | 0.999 | 0.998 | 0.998 | 0.998 | 0.996 | 0.998 | 0.997 | 0.978 | |
Parameter | Oak 1 | ||||||||
θv (%) | 0.0% | 0.4% | 1.0% | 1.3% | 1.6% | 3.2% | 4.2% | ||
a | −0.89 | −0.97 | −1.05 | −1.13 | −1.20 | −1.50 | −1.45 | ||
b | 3.96 | 4.06 | 4.17 | 4.27 | 4.35 | 4.75 | 4.91 | ||
R2 | 0.998 | 0.998 | 0.999 | 0.998 | 0.998 | 0.995 | 0.995 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Alvia, L.; Piuzzi, E.; Cataldo, A.; Del Prete, Z. Permittivity-Based Water Content Calibration Measurement in Wood-Based Cultural Heritage: A Preliminary Study. Sensors 2022, 22, 2148. https://doi.org/10.3390/s22062148
D’Alvia L, Piuzzi E, Cataldo A, Del Prete Z. Permittivity-Based Water Content Calibration Measurement in Wood-Based Cultural Heritage: A Preliminary Study. Sensors. 2022; 22(6):2148. https://doi.org/10.3390/s22062148
Chicago/Turabian StyleD’Alvia, Livio, Emanuele Piuzzi, Andrea Cataldo, and Zaccaria Del Prete. 2022. "Permittivity-Based Water Content Calibration Measurement in Wood-Based Cultural Heritage: A Preliminary Study" Sensors 22, no. 6: 2148. https://doi.org/10.3390/s22062148
APA StyleD’Alvia, L., Piuzzi, E., Cataldo, A., & Del Prete, Z. (2022). Permittivity-Based Water Content Calibration Measurement in Wood-Based Cultural Heritage: A Preliminary Study. Sensors, 22(6), 2148. https://doi.org/10.3390/s22062148