Dietary Patterns Associated with Diabetes in an Older Population from Southern Italy Using an Unsupervised Learning Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment and Clinical Evaluation
2.3. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation—Home. Available online: www.idf.org (accessed on 9 December 2021).
- International Diabetes Federation. IDF Diabetes Atlas, 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019; Available online: https://diabetesatlas.org/en/ (accessed on 8 February 2022).
- Il Diabete In Italia. 2017. Available online: https://www.istat.it/it/files/2017/07/REPORT_DIABETE.pdf (accessed on 8 February 2022).
- Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk Factors Contributing to Type 2 Diabetes and Recent Advances in the Treatment and Prevention. Int. J. Med. Sci. 2014, 11, 1185–1200. [Google Scholar] [CrossRef] [PubMed]
- Bonora, E.; Sesti, G. Il Diabete in Italia di Diabetologia SID; Bonomia University Press: Bologna, Italy, 2016; ISBN 9788869231469. [Google Scholar]
- Ministero della Salute. Available online: http://www.salute.gov.it (accessed on 1 March 2022).
- American Diabetes Association; Bantle, J.P.; Wylie-Rosett, J.; Albright, A.L.; Apovian, C.M.; Clark, N.G.; Franz, M.J.; Hoogwerf, B.J.; Lichtenstein, A.H.; Mayer-Davis, E.; et al. Nutrition Recommendations and Interventions for Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care 2008, 31 (Suppl. 1), S61–S78. [Google Scholar] [CrossRef] [PubMed]
- Stumvoll, M.; Goldstein, B.J.; van Haeften, T.W. Type 2 Diabetes: Principles of Pathogenesis and Therapy. Lancet 2005, 365, 1333–1346. [Google Scholar] [CrossRef]
- Fox, C.S. Trends in Cardiovascular Complications of Diabetes. JAMA 2004, 292, 2495–2499. [Google Scholar] [CrossRef] [PubMed]
- Aschner, P. New IDF Clinical Practice Recommendations for Managing Type 2 Diabetes in Primary Care. Diabetes Res. Clin. Pract. 2017, 132, 169–170. [Google Scholar] [CrossRef] [PubMed]
- Nöthlings, U.; Boeing, H.; Maskarinec, G.; Sluik, D.; Teucher, B.; Kaaks, R.; Tjønneland, A.; Halkjaer, J.; Dethlefsen, C.; Overvad, K.; et al. Food Intake of Individuals with and without Diabetes across Different Countries and Ethnic Groups. Eur. J. Clin. Nutr. 2011, 65, 635–641. [Google Scholar] [CrossRef]
- Galbete, C.; Schwingshackl, L.; Schwedhelm, C.; Boeing, H.; Schulze, M.B. Evaluating Mediterranean Diet and Risk of Chronic Disease in Cohort Studies: An Umbrella Review of Meta-Analyses. Eur. J. Epidemiol. 2018, 33, 909–931. [Google Scholar] [CrossRef]
- D’Alessandro, A.; De Pergola, G. The Mediterranean Diet: Its Definition and Evaluation of a Priori Dietary Indexes in Primary Cardiovascular Prevention. Int. J. Food Sci. Nutr. 2018, 69, 647–659. [Google Scholar] [CrossRef]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean Diet and Multiple Health Outcomes: An Umbrella Review of Meta-Analyses of Observational Studies and Randomised Trials. Eur. J. Clin. Nutr. 2018, 72, 30–43. [Google Scholar] [CrossRef]
- Ruggiero, E.; Di Castelnuovo, A.; Costanzo, S.; Persichillo, M.; Bracone, F.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L.; Bonaccio, M.; et al. Socioeconomic and Psychosocial Determinants of Adherence to the Mediterranean Diet in a General Adult Italian Population. Eur. J. Public Health 2019, 29, 328–335. [Google Scholar] [CrossRef]
- Papamichou, D.; Panagiotakos, D.B.; Itsiopoulos, C. Dietary Patterns and Management of Type 2 Diabetes: A Systematic Review of Randomised Clinical Trials. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Attili, A.F.; Carulli, N.; Roda, E.; Barbara, B.; Capocaccia, L.; Menotti, A.; Okoliksanyi, L.; Ricci, G.; Capocaccia, R.; Festi, D.; et al. Epidemiology of Gallstone Disease in Italy: Prevalence Data of the Multicenter Italian Study on Cholelithiasis (M.I.COL.). Am. J. Epidemiol. 1995, 141, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Castellana, F.; Zupo, R.; Bortone, I.; Giannelli, G.; Donghia, R.; Lampignano, L.; Griseta, C.; De Pergola, G.; Boeing, H.; Cisternino, A.M.; et al. Traditional Old Dietary Pattern of Castellana Grotte (Apulia) Is Associated with Healthy Outcomes. Nutrients 2020, 12, 3097. [Google Scholar] [CrossRef] [PubMed]
- Sardone, R.; Lampignano, L.; Guerra, V.; Zupo, R.; Donghia, R.; Castellana, F.; Battista, P.; Bortone, I.; Procino, F.; Castellana, M.; et al. Relationship between Inflammatory Food Consumption and Age-Related Hearing Loss in a Prospective Observational Cohort: Results from the Salus in Apulia Study. Nutrients 2020, 12, 426. [Google Scholar] [CrossRef]
- Lampignano, L.; Quaranta, N.; Bortone, I.; Tirelli, S.; Zupo, R.; Castellana, F.; Donghia, R.; Guerra, V.; Griseta, C.; Pesole, P.L.; et al. Dietary Habits and Nutrient Intakes Are Associated to Age-Related Central Auditory Processing Disorder in a Cohort From Southern Italy. Front. Aging Neurosci. 2021, 13, 629017. [Google Scholar] [CrossRef]
- Zupo, R.; Sardone, R.; Donghia, R.; Castellana, F.; Lampignano, L.; Bortone, I.; Misciagna, G.; De Pergola, G.; Panza, F.; Lozupone, M.; et al. Traditional Dietary Patterns and Risk of Mortality in a Longitudinal Cohort of the Salus in Apulia Study. Nutrients 2020, 12, 1070. [Google Scholar] [CrossRef] [PubMed]
- Schwedhelm, C.; Iqbal, K.; Knüppel, S.; Schwingshackl, L.; Boeing, H. Contribution to the Understanding of How Principal Component Analysis–derived Dietary Patterns Emerge from Habitual Data on Food Consumption. Am. J. Clin. Nutr. 2018, 107, 227–235. [Google Scholar] [CrossRef]
- Istat. Annuario Statistico Italiano; Istat: Rome, Italy, 2018; ISBN 9788845819650. [Google Scholar]
- Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic Syndrome: Definitions and Controversies. BMC Med. 2011, 9, 48. [Google Scholar] [CrossRef]
- Dziegielewska-Gesiak, S. Metabolic Syndrome in an Aging Society—Role of Oxidant-Antioxidant Imbalance and Inflammation Markers in Disentangling Atherosclerosis. Clin. Interv. Aging 2021, 16, 1057–1070. [Google Scholar] [CrossRef]
- Chawla, A.; Nguyen, K.D.; Sharon Goh, Y.P. Macrophage-Mediated Inflammation in Metabolic Disease. Nat. Rev. Immunol. 2011, 11, 738–749. [Google Scholar] [CrossRef]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in Inflammation and Metabolic Disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Bastard, J.P.; Jardel, C.; Bruckert, E.; Blondy, P.; Capeau, J.; Laville, M.; Vidal, H.; Hainque, B. Elevated Levels of Interleukin 6 Are Reduced in Serum and Subcutaneous Adipose Tissue of Obese Women after Weight Loss. J. Clin. Endocrinol. Metab. 2000, 85, 3338–3342. [Google Scholar] [CrossRef] [PubMed]
- Pazos, F. Range of Adiposity and Cardiorenal Syndrome. World J. Diabetes 2020, 11, 322–350. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose Tissue Inflammation and Metabolic Dysfunction in Obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef] [PubMed]
- Joshipura, K.J.; Hu, F.B.; Manson, J.E.; Stampfer, M.J.; Rimm, E.B.; Speizer, F.E.; Colditz, G.; Ascherio, A.; Rosner, B.; Spiegelman, D.; et al. The Effect of Fruit and Vegetable Intake on Risk for Coronary Heart Disease. Ann. Intern. Med. 2001, 134, 1106. [Google Scholar] [CrossRef]
- Sargeant, L.A.; Khaw, K.T.; Bingham, S.; Day, N.E.; Luben, R.N.; Oakes, S.; Welch, A.; Wareham, N.J. Fruit and Vegetable Intake and Population Glycosylated Haemoglobin Levels: The EPIC-Norfolk Study. Eur. J. Clin. Nutr. 2001, 55, 342–348. [Google Scholar] [CrossRef]
- Chandalia, M.; Garg, A.; Lutjohann, D.; von Bergmann, K.; Grundy, S.M.; Brinkley, L.J. Beneficial Effects of High Dietary Fiber Intake in Patients with Type 2 Diabetes Mellitus. N. Engl. J. Med. 2000, 342, 1392–1398. [Google Scholar] [CrossRef]
- Tosh, S.M.; Bordenave, N. Emerging Science on Benefits of Whole Grain Oat and Barley and Their Soluble Dietary Fibers for Heart Health, Glycemic Response, and Gut Microbiota. Nutr. Rev. 2020, 78, 13–20. [Google Scholar] [CrossRef]
- Champagne, C.M. Dietary Interventions on Blood Pressure: The Dietary Approaches to Stop Hypertension (DASH) Trials. Nutr. Rev. 2006, 64, S53–S56. [Google Scholar] [CrossRef]
- Eichholzer, M.; Lüthy, J.; Gutzwiller, F.; Stähelin, H.B. The Role of Folate, Antioxidant Vitamins and Other Constituents in Fruit and Vegetables in the Prevention of Cardiovascular Disease: The Epidemiological Evidence. Int. J. Vitam. Nutr. Res. 2001, 71, 5–17. [Google Scholar] [CrossRef]
- Hamer, M.; Chida, Y. Intake of Fruit, Vegetables, and Antioxidants and Risk of Type 2 Diabetes: Systematic Review and Meta-Analysis. J. Hypertens. 2007, 25, 2361–2369. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.-S.; Sharp, S.J.; Imamura, F.; Chowdhury, R.; Gundersen, T.E.; Steur, M.; Sluijs, I.; van der Schouw, Y.T.; Agudo, A.; Aune, D.; et al. Association of Plasma Biomarkers of Fruit and Vegetable Intake with Incident Type 2 Diabetes: EPIC-InterAct Case-Cohort Study in Eight European Countries. BMJ 2020, 370, m2194. [Google Scholar] [CrossRef] [PubMed]
- Bacchetti, T.; Turco, I.; Urbano, A.; Morresi, C.; Ferretti, G. Relationship of Fruit and Vegetable Intake to Dietary Antioxidant Capacity and Markers of Oxidative Stress: A Sex-Related Study. Nutrition 2019, 61, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H. Health-Promoting Components of Fruits and Vegetables in the Diet. Adv. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef] [PubMed]
- Hawkesworth, S.; Dangour, A.D.; Johnston, D.; Lock, K.; Poole, N.; Rushton, J.; Uauy, R.; Waage, J. Feeding the World Healthily: The Challenge of Measuring the Effects of Agriculture on Health. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 3083–3097. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. Promoting Sustainable and Inclusive Value Chains for Fruits and Vegetables—Policy Review: Background Paper for the FAO/WHO International Workshop on Fruits and Vegetables 2020; Food & Agriculture Org.: Rome, Italy, 2021; ISBN 9789251347188. [Google Scholar]
- Mingioni, M.; Mehinagic, E.; Laguna, L.; Sarkar, A.; Pirttijärvi, T.; Van Wymelbeke, V.; Artigas, G.; Chen, J.; Kautola, H.; Järvenpää, E.; et al. Fruit and Vegetables Liking among European Elderly according to Food Preferences, Attitudes towards Food and Dependency. Food Qual. Prefer. 2016, 50, 27–37. [Google Scholar] [CrossRef]
- World Health Organization. Regional Office for Europe CINDI Dietary Guide; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2000. [Google Scholar]
- L’epidemiologia per la Sanità Pubblica. La Qualità della Vita Vista dalle Persone con 65 Anni e Più. 2022. Available online: https://www.epicentro.iss.it/passi-argento/ (accessed on 7 February 2022).
- D’Alessandro, A.; Lampignano, L.; De Pergola, G. Mediterranean Diet Pyramid: A Proposal for Italian People. A Systematic Review of Prospective Studies to Derive Serving Sizes. Nutrients 2019, 11, 1296. [Google Scholar] [CrossRef]
- Fretts, A.M.; Follis, J.L.; Nettleton, J.A.; Lemaitre, R.N.; Ngwa, J.S.; Wojczynski, M.K.; Kalafati, I.P.; Varga, T.V.; Frazier-Wood, A.C.; Houston, D.K.; et al. Consumption of Meat Is Associated with Higher Fasting Glucose and Insulin Concentrations regardless of Glucose and Insulin Genetic Risk Scores: A Meta-Analysis of 50,345 Caucasians. Am. J. Clin. Nutr. 2015, 102, 1266–1278. [Google Scholar] [CrossRef]
- Van Eekelen, E.; Geelen, A.; Alssema, M.; Lamb, H.J.; de Roos, A.; Rosendaal, F.R.; de Mutsert, R. Sweet Snacks Are Positively and Fruits and Vegetables Are Negatively Associated with Visceral or Liver Fat Content in Middle-Aged Men and Women. J. Nutr. 2019, 149, 304–313. [Google Scholar] [CrossRef]
- Ma, J.; Jacques, P.F.; Meigs, J.B.; Fox, C.S.; Rogers, G.T.; Smith, C.E.; Hruby, A.; Saltzman, E.; McKeown, N.M. Sugar-Sweetened Beverage but Not Diet Soda Consumption Is Positively Associated with Progression of Insulin Resistance and Prediabetes. J. Nutr. 2016, 146, 2544–2550. [Google Scholar] [CrossRef]
- O’Connor, L.; Imamura, F.; Brage, S.; Griffin, S.J.; Wareham, N.J.; Forouhi, N.G. Intakes and Sources of Dietary Sugars and Their Association with Metabolic and Inflammatory Markers. Clin. Nutr. 2018, 37, 1313–1322. [Google Scholar] [CrossRef] [PubMed]
- Karatzi, K.; Moschonis, G.; Barouti, A.-A.; Lionis, C.; Chrousos, G.P.; Manios, Y.; Healthy Growth Study Group. Dietary Patterns and Breakfast Consumption in Relation to Insulin Resistance in Children. The Healthy Growth Study. Public Health Nutr. 2014, 17, 2790–2797. [Google Scholar] [CrossRef] [PubMed]
- Aoun, C.; Daher, R.B.; El Osta, N.; Papazian, T.; Khabbaz, L.R. Reproducibility and Relative Validity of a Food Frequency Questionnaire to Assess Dietary Intake of Adults Living in a Mediterranean Country. PLoS ONE 2019, 14, e0218541. [Google Scholar] [CrossRef] [PubMed]
Diabetic Disease | |||
---|---|---|---|
Parameters * | No | Yes | p ψ |
(n = 1212) | (n = 187) | ||
Gender (%) | 0.02 ^ | ||
M | 634 (52.31) | 115 (61.50) | |
F | 578 (47.69) | 72 (38.50) | |
Age (yrs) | 73.24 ± 6.26 | 74.66 ± 6.39 | 0.003 |
Education (yrs) | 7.07 ± 3.80 | 6.52 ± 3.78 | 0.05 |
BMI (kg/m2) | 28.90 ± 4.34 | 29.07 ± 4.18 | 0.60 |
Normal weight (BMI ≤ 24.90) | 221 (18.54) | 28 (15.05) | |
Overweight (BMI 25.0–29.90) | 548 (45.97) | 93 (50.00) | |
Obese (BMI ≥ 30) | 423 (35.49) | 65 (34.95) | |
Waist (cm) | 102.92 ± 10.42 | 104.05 ± 10.08 | 0.24 |
Biomarkers | |||
Glucose (mg/dL) | 98.11 ± 11.33 | 160.63 ± 44.98 | <0.0001 |
Cholesterol (mg/dL) | 185.89 ± 36.87 | 167.47 ± 36.61 | <0.0001 |
HDL (mg/dL) | 49.41 ± 13.03 | 42.95 ± 10.63 | <0.0001 |
LDL (mg/dL) | 115.32 ± 31.14 | 97.78 ± 30.54 | <0.0001 |
Triglycerides (mg/dL) | 101.84 ± 54.25 | 133.58 ± 78.68 | <0.0001 |
Systolic Blood Pressure (mmHg) | 132.76 ± 14.30 | 136.90 ± 14.76 | 0.0006 |
Diastolic Blood Pressure (mmHg) | 78.48 ± 7.72 | 77.46 ± 8.19 | 0.04 |
IL-6 (pg/mL) | 3.85 ± 6.73 | 4.39 ± 6.48 | 0.0001 |
TNF-α (µg/mL) | 2.76 ± 3.87 | 3.16 ± 2.98 | 0.01 |
Diabetic Disease | |||
---|---|---|---|
Parameters * | No | Yes | p ψ |
(n = 1212) | (n = 187) | ||
Food-Groups ¥ | |||
Dairy | 104.19 ± 111.15 | 109.38 ± 99.20 | 0.41 |
Low-Fat Dairy | 101.84 ± 108.35 | 98.18 ± 107.52 | 0.49 |
Eggs | 8.33 ± 9.12 | 7.40 ± 8.64 | 0.02 |
White Meat | 26.32 ± 32.52 | 28.19 ± 59.34 | 0.82 |
Red Meat | 22.62 ± 23.62 | 25.99 ± 39.21 | 0.17 |
Processed Meat | 15.11 ± 15.45 | 17.57 ± 40.64 | 0.50 |
Fish | 25.20 ± 23.95 | 33.64 ± 100.18 | 0.39 |
Seafood/Shellfish | 9.45 ± 13.75 | 14.84 ± 64.34 | 0.31 |
Leafy Vegetables | 59.02 ± 60.42 | 65.59 ± 93.65 | 0.94 |
Fruiting Vegetables | 93.39 ± 78.56 | 107.85 ± 105.38 | 0.08 |
Root Vegetables | 11.81 ± 26.78 | 14.17 ± 33.44 | 0.17 |
Other Vegetables | 80.28 ± 77.02 | 93.80 ± 106.76 | 0.28 |
Legumes | 37.78 ± 27.66 | 41.27 ± 46.99 | 0.99 |
Potatoes | 13.31 ± 16.38 | 14.01 ± 31.18 | 0.002 |
Fruits | 620.23 ± 537.58 | 598.35 ± 485.11 | 0.89 |
Nuts | 7.56 ± 15.72 | 5.49 ± 16.04 | <0.0001 |
Grains | 157.59 ± 108.42 | 145.80 ± 99.22 | 0.29 |
Sweets | 23.74 ± 35.81 | 16.52 ± 22.87 | <0.0001 |
Sugary foods | 11.08 ± 21.85 | 7.22 ± 15.96 | <0.0001 |
Juices | 6.96 ± 20.64 | 4.80 ± 21.26 | 0.002 |
High Calorie Drinks | 7.31 ± 42.37 | 16.85 ± 95.24 | 0.53 |
Ready-to-Eat Dishes | 33.24 ± 34.83 | 34.45 ± 94.18 | 0.01 |
Coffee | 46.41 ± 29.97 | 50.32 ± 28.72 | 0.06 |
Wine | 121.98 ± 162.88 | 124.38 ± 169.39 | 0.85 |
Beer | 19.54 ± 73.26 | 19.56 ± 69.59 | 0.85 |
Spirits | 1.54 ± 5.48 | 1.31 ± 5.31 | 0.62 |
Water | 653.61 ± 297.74 | 705.75 ± 312.98 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tatoli, R.; Lampignano, L.; Bortone, I.; Donghia, R.; Castellana, F.; Zupo, R.; Tirelli, S.; De Nucci, S.; Sila, A.; Natuzzi, A.; et al. Dietary Patterns Associated with Diabetes in an Older Population from Southern Italy Using an Unsupervised Learning Approach. Sensors 2022, 22, 2193. https://doi.org/10.3390/s22062193
Tatoli R, Lampignano L, Bortone I, Donghia R, Castellana F, Zupo R, Tirelli S, De Nucci S, Sila A, Natuzzi A, et al. Dietary Patterns Associated with Diabetes in an Older Population from Southern Italy Using an Unsupervised Learning Approach. Sensors. 2022; 22(6):2193. https://doi.org/10.3390/s22062193
Chicago/Turabian StyleTatoli, Rossella, Luisa Lampignano, Ilaria Bortone, Rossella Donghia, Fabio Castellana, Roberta Zupo, Sarah Tirelli, Sara De Nucci, Annamaria Sila, Annalidia Natuzzi, and et al. 2022. "Dietary Patterns Associated with Diabetes in an Older Population from Southern Italy Using an Unsupervised Learning Approach" Sensors 22, no. 6: 2193. https://doi.org/10.3390/s22062193
APA StyleTatoli, R., Lampignano, L., Bortone, I., Donghia, R., Castellana, F., Zupo, R., Tirelli, S., De Nucci, S., Sila, A., Natuzzi, A., Lozupone, M., Griseta, C., Sciarra, S., Aresta, S., De Pergola, G., Sorino, P., Lofù, D., Panza, F., Di Noia, T., & Sardone, R. (2022). Dietary Patterns Associated with Diabetes in an Older Population from Southern Italy Using an Unsupervised Learning Approach. Sensors, 22(6), 2193. https://doi.org/10.3390/s22062193