Using Stream Data Processing for Real-Time Occupancy Detection in Smart Buildings
Abstract
:1. Introduction and Motivation
- Evaluating the stream machine learning algorithms in terms of the accuracy and performance, with the aim of predicting number of occupants in smart buildings.
- Deploying and introducing the platform architecture adopted for the application of stream machine learning algorithms to predict the number of occupants.
2. Related Work
3. Methods and Materials
3.1. Platform Architecture for Collecting and Processing Data
3.2. Predictive Modeling Methods
3.2.1. Hoeffding Tree Algorithm
3.2.2. Naïve Bayes Algorithm
3.2.3. KNN Classifier with Self-Adjusting Memory (SAMKNN) Algorithm
4. Experimental Results and Discussion
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Boharb, A.; Allouhi, A.; Saidur, R.; Kousksou, T.; Jamil, A.; Mourad, Y.; Benbassou, A. Auditing and analysis of energy consumption of an industrial site in Morocco. Energy 2016, 101, 332–342. [Google Scholar] [CrossRef]
- Kousksou, T.; Allouhi, A.; Belattar, M.; Jamil, A.; El Rhafiki, T.; Zeraouli, Y. Morocco’s strategy for energy security and low-carbon growth. Energy 2015, 84, 98–105. [Google Scholar] [CrossRef]
- Hayduk, G.; Kwasnowski, P.; Mikoś, Z. Building management system architecture for large building automation systems. In Proceedings of the 2016 17th International Carpathian Control Conference (ICCC), High Tatras, Slovakia, 29 May–1 June 2016; pp. 232–235. [Google Scholar]
- Kamali, S.; Khakzar, G.; Abdali Hajiabadi, S. Effect of Building Management System on Energy Saving. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2014; Volume 856, pp. 333–337. [Google Scholar]
- Delzendeh, E.; Wu, S.; Lee, A.; Zhou, Y. The impact of occupants’ behaviours on building energy analysis: A research review. Renew. Sustain. Energy Rev. 2017, 80, 1061–1071. [Google Scholar] [CrossRef]
- Rafsanjani, H.N.; Ahn, C.R.; Chen, J. Linking building energy consumption with occupants’ energy-consuming behaviors in commercial buildings: Non-intrusive occupant load monitoring (NIOLM). Energy Build. 2018, 172, 317–327. [Google Scholar] [CrossRef]
- Rafsanjani, H.N.; Ahn, C.R.; Alahmad, M. Development of non-intrusive occupant load monitoring (NIOLM) in commercial buildings: Assessing occupants’ energy-use behavior at entry and departure events. In Sustainable Human–Building Ecosystems, Proceedings of the First International Symposium on Sustainable Human–Building Ecosystems, Pittsburgh, PA, USA, 5–6 October 2015; American Society of Civil Engineers: Reston, VA, USA, 2015; pp. 44–53. [Google Scholar]
- Christensen, K.; Melfi, R.; Nordman, B.; Rosenblum, B.; Viera, R. Using existing network infrastructure to estimate building occupancy and control plugged-in devices in user workspaces. Int. J. Commun. Netw. Distrib. Syst. 2014, 12, 4–29. [Google Scholar] [CrossRef] [Green Version]
- Labeodan, T.; Zeiler, W.; Boxem, G.; Zhao, Y. Occupancy measurement in commercial office buildings for demand-driven control applications—A survey and detection system evaluation. Energy Build. 2015, 93, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Hobson, B.W.; Lowcay, D.; Gunay, H.B.; Ashouri, A.; Newsham, G.R. Opportunistic occupancy-count estimation using sensor fusion: A case study. Build. Environ. 2019, 159, 106154. [Google Scholar] [CrossRef]
- Yang, Z.; Li, N.; Becerik-Gerber, B.; Orosz, M. A systematic approach to occupancy modeling in ambient sensor-rich buildings. Simulation 2013, 90, 960–977. [Google Scholar] [CrossRef]
- Becker, V.; Kleiminger, W. Exploring zero-training algorithms for occupancy detection based on smart meter measurements. Comput. Sci.-Res. Dev. 2017, 33, 25–36. [Google Scholar] [CrossRef]
- Raykov, Y.P.; Ozer, E.; Dasika, G.; Boukouvalas, A.; Little, M.A. Predicting room occupancy with a single passive infrared (PIR) sensor through behavior extraction. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing—UbiComp ’16, Heidelberg, Germany, 12–16 September 2016. [Google Scholar] [CrossRef] [Green Version]
- Elmouatamid, A.; NaitMalek, Y.; Ouladsine, R.; Bakhouya, M.; Elkamoun, N.; Khaidar, M.; Zine-Dine, K. A Micro-Grid System Infrastructure Implementing IoT/Big-Data Technologies for Efficient Energy Management in Buildings. In ATSPES’1 (Advanced Technologies for Solar Photovoltaics Energy Systems); Springer: Cham, Switzerland, 2020. [Google Scholar]
- Durant-Whyte, H.F. Sensor models and multisensor integration. Int. J. Robot. Res. 1988, 7, 97–113. [Google Scholar] [CrossRef]
- Castenedo, F. A review of data fusion technique. Sci. World J. 2013, 2013, 704504. [Google Scholar] [CrossRef]
- Hadri, S.; Naitmalek, Y.; Najib, M.; Bakhouya, M.; Fakhri, Y.; Elaroussi, M. A comparative study of predictive approaches for load forecasting in smart buildings. Procedia Comput. Sci. 2019, 160, 173–180. [Google Scholar] [CrossRef]
- Elkhoukhi, H.; NaitMalek, Y.; Bakhouya, M.; Berouine, A.; Kharbouch, A.; Lachhab, F.; Hanifi, M.; el Ouadghiri, D.; Essaaidi, M. A platform architecture for occupancy detection using stream processing and machine learning approaches. Concurr. Comput. Pract. Exp. 2020, 32, e5651. [Google Scholar] [CrossRef]
- Wu, E.Q.; Zhou, M.; Hu, D.; Zhu, L.; Tang, Z.; Qiu, X.; Deng, P.; Zhu, L.; Ren, H. Self-Paced Dynamic Infinite Mixture Model for Fatigue Evaluation of Pilots’ Brains. IEEE Trans. Cybern. 2021, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ran, X.; Zhou, X.; Lei, M.; Tepsan, W.; Deng, W. A novel k-means clustering algorithm with a noise algorithm for capturing urban hotspots. Appl. Sci. 2021, 11, 11202. [Google Scholar] [CrossRef]
- Elmouatamid, A. MAPCAST: An Adaptive Control Approach using Predictive Analytics for Energy Balance in Micro-Grid Systems. Int. J. Renew. Energy Res. (IJRER) 2020, 10, 945–954. [Google Scholar]
- Wang, H.; Abraham, Z. Concept drift detection for streaming data. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015; pp. 1–9. [Google Scholar]
- Ditzler, G.; Roveri, M.; Alippi, C.; Polikar, R. Learning in nonstationary environments: A survey. IEEE Comput. Intell. Mag. 2015, 10, 12–25. [Google Scholar] [CrossRef]
- Gomes, H.M.; Read, J.; Bifet, A.; Barddal, J.P.; Gama, J. Machine learning for streaming data: State of the art, challenges, and opportunities. ACM SIGKDD Explor. Newsl. 2019, 21, 6–22. [Google Scholar] [CrossRef]
- Žliobaitė, I.; Pechenizkiy, M.; Gama, J. An overview of concept drift applications. Big data analysis: New algorithms for a new society. In Big Data Analysis: New Algorithms for a New Society; Springer: Cham, Switzerland, 2016; pp. 91–114. [Google Scholar]
- Bifet, A.; Gavalda, R. Learning from time-changing data with adaptive windowing. In Proceedings of the 2007 SIAM International Conference on Data Mining, Minneapolis, MN, USA, 26–28 April 2007; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA; pp. 443–448. [Google Scholar]
- Bifet, A.; Gavaldà, R.; Holmes, G.; Pfahringer, B. Machine Learning for Data Streams: With Practical Examples in MOA; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Tsymbal, A. The problem of concept drift: Definitions and related work. Comput. Sci. Dep. Trinity Coll. Dublin 2004, 106, 58. [Google Scholar]
- Ade, R.R.; Deshmukh, P.R. Methods for incremental learning: A survey. Int. J. Data Min. Knowl. Manag. Process 2013, 3, 119. [Google Scholar]
- Zuraimi, M.S.; Pantazaras, A.; Chaturvedi, K.A.; Yang, J.J.; Tham, K.W.; Lee, S.E. Predicting occupancy counts using physical and statistical Co2-based modeling methodologies. Build. Environ. 2017, 123, 517–528. [Google Scholar] [CrossRef]
- Candanedo, L.M.; Feldheim, V.; Deramaix, D. A methodology based on Hidden Markov Models for occupancy detection and a case study in a low energy residential building. Energy Build. 2017, 148, 327–341. [Google Scholar] [CrossRef]
- Candanedo, L.M.; Feldheim, V. Accurate occupancy detection of an office room from light, temperature, humidity and CO2 measurements using statistical learning models. Energy Build. 2016, 112, 28–39. [Google Scholar] [CrossRef]
- Chefrour, A. Incremental supervised learning: Algorithms and applications in pattern recognition. Evol. Intell. 2019, 12, 97–112. [Google Scholar] [CrossRef]
- Agarwal, Y.; Balaji, B.; Gupta, R.; Lyles, J.; Wei, M.; Weng, T. Occupancy-driven energy management for smart building automation. In Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building, Zurich, Switzerland, 2 November 2010; pp. 1–6. [Google Scholar]
- Berouine, A.; Ouladsine, R.; Bakhouya, M.; Lachhab, F.; Essaaidi, M. A model predictive approach for ventilation system control in energy efficient buildings. In Proceedings of the 2019 4th World Conference on Complex Systems (WCCS), Ouarzazate, Morocco, 22–25 April 2019; pp. 1–6. [Google Scholar]
- Lachhab, F.; Bakhouya, M.; Ouladsine, R.; Essaaidi, M. A context-driven platform using Internet of things and data stream processing for heating, ventilation and air conditioning systems control. Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. 2019, 233, 877–888. [Google Scholar] [CrossRef]
- Wang, S.; Burnett, J.; Chong, H. Experimental validation of CO2-based occupancy detection for demand-controlled ventilation. Indoor Built Environ. 1999, 8, 377–391. [Google Scholar] [CrossRef]
- Oldewurtel, F.; Sturzenegger, D.; Morari, M. Importance of occupancy information for building climate control. Appl. Energy 2013, 101, 521–532. [Google Scholar] [CrossRef]
- Elkhoukhi, H.; NaitMalek, Y.; Berouine, A.; Bakhouya, M.; Elouadghiri, D.; Essaaidi, M. Towards a real-time occupancy detection approach for smart buildings. Procedia Comput. Sci. 2018, 134, 114–120. [Google Scholar] [CrossRef]
- Vafeiadis, T.; Zikos, S.; Stavropoulos, G.; Ioannidis, D.; Krinidis, S.; Tzovaras, D.; Moustakas, K. Machine learning based occupancy detection via the use of smart meters. In Proceedings of the 2017 International Symposium on Computer Science and Intelligent Controls (ISCSIC), Budapest, Hungary, 20–22 October 2017; pp. 6–12. [Google Scholar]
- Calì, D.; Matthes, P.; Huchtemann, K.; Streblow, R.; Müller, D. CO2 based occupancy detection algorithm: Experimental analysis and validation for office and residential buildings. Build. Environ. 2015, 86, 39–49. [Google Scholar] [CrossRef]
- Domingos, P.; Hulten, G. Mining high-speed data streams. In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, MA, USA, 20–23 August 2000; pp. 71–80. [Google Scholar]
- Kumar, A.; Kaur, P.; Sharma, P. A survey on Hoeffding tree stream data classification algorithms. CPUH-Res. J. 2015, 1, 28–32. [Google Scholar]
- Bahri, M.; Maniu, S.; Bifet, A. A Sketch-Based Naive Bayes Algorithms for Evolving Data Streams. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018. [Google Scholar] [CrossRef]
- Bifet, A.; Holmes, G.; Pfahringer, B.; Kranen, P.; Kremer, H.; Jansen, T.; Seidl, T. Moa: Massive online analysis, a framework for stream classification and clustering. In Proceedings of the First Workshop on Applications of Pattern Analysis, Cumberland Lodge, Windsor, UK, 1–3 September 2010; pp. 44–50. [Google Scholar]
- Losing, V.; Hammer, B.; Wersing, H. KNN classifier with self-adjusting memory for heterogeneous concept drift. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016; pp. 291–300. [Google Scholar]
Algorithms | CPU Seconds | RAM-Hours | Accuracy Rate |
---|---|---|---|
Hoeffding tree | 0.04 s | GB | 83.74 % |
Naïve Bayes | s | GB | 58.85 % |
SAMKNN | 0.21 s | GB | 87.06 % |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkhoukhi, H.; Bakhouya, M.; El Ouadghiri, D.; Hanifi, M. Using Stream Data Processing for Real-Time Occupancy Detection in Smart Buildings. Sensors 2022, 22, 2371. https://doi.org/10.3390/s22062371
Elkhoukhi H, Bakhouya M, El Ouadghiri D, Hanifi M. Using Stream Data Processing for Real-Time Occupancy Detection in Smart Buildings. Sensors. 2022; 22(6):2371. https://doi.org/10.3390/s22062371
Chicago/Turabian StyleElkhoukhi, Hamza, Mohamed Bakhouya, Driss El Ouadghiri, and Majdoulayne Hanifi. 2022. "Using Stream Data Processing for Real-Time Occupancy Detection in Smart Buildings" Sensors 22, no. 6: 2371. https://doi.org/10.3390/s22062371
APA StyleElkhoukhi, H., Bakhouya, M., El Ouadghiri, D., & Hanifi, M. (2022). Using Stream Data Processing for Real-Time Occupancy Detection in Smart Buildings. Sensors, 22(6), 2371. https://doi.org/10.3390/s22062371