Cooperative Reception of Multiple Satellite Downlinks
Abstract
:1. Introduction
2. System Description and Design
2.1. SISO System
2.2. SIMO System
- -
- Success probability of (1 − Pout)2, when both sites are receiving good quality signal;
- -
- Success probability of (1 − Pout)·(Pout), when only one site is receiving good quality signal; and
- -
- Outage probability of (Pout·Pout) = Pout2, when both sites fail to receive good quality signal.
3. Results and Discussion
3.1. Exclusion of the Worst Stream
3.2. The Best Stream Replacing the Worst One
3.3. The Best Stream Is Repeatedly Injected
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, M.; Park, D.J. Learnable MIMO detection networks based on inexact ADMM. IEEE Trans. Wirel. Commun. 2020, 20, 565–576. [Google Scholar] [CrossRef]
- Lv, Y.; He, Z.; Rong, Y.J. Two-way AF MIMO multi-relay system design using MMSE-DFE techniques. IEEE Trans. Wirel. Commun. 2020, 20, 389–405. [Google Scholar] [CrossRef]
- Sun, W.-B.; Tao, M.-L.; Wang, L.; Yang, X.; Zhou, R.-Z.; Yang, Z.-X. Joint Resource Allocation for Multiuser Opportunistic Beamforming Systems with OFDM-NOMA. Entropy 2021, 23, 809. [Google Scholar] [CrossRef] [PubMed]
- Proakis, J.G.; Salehi, M. Digital Communications; McGraw-Hill: New York, NY, USA, 2001; Volume 4. [Google Scholar]
- Mietzner, J.; Schober, R.; Lampe, L.; Gerstacker, W.H.; Hoeher, P.A. Multiple-Antenna Techniques for Wireless Communications—A Comprehensive Literature Survey. IEEE Commun. Surv. Tut. 2009, 11, 87–105. [Google Scholar] [CrossRef]
- Kelechi, A.H.; Alsharif, M.H.; Oluwole, D.A.; Achimugu, P.; Ubadike, O.; Nebhen, J.; Aaron-Anthony, A.; Uthansakul, P.J.S. The Recent Advancement in Unmanned Aerial Vehicle Tracking Antenna: A Review. Sensors 2021, 21, 5662. [Google Scholar] [CrossRef]
- Matthie, S.; Senega, S.; Lindenmeier, S. An Antenna Diversity and Combining System for Improved Mobile GNSS Reception. In Proceedings of the 2019 49th European Microwave Conference (EuMC), Paris, France, 1–3 October 2019; pp. 1084–1087. [Google Scholar]
- Qi, N.; Xu, Y.; Chi, B.Y.; Xu, Y.; Yu, X.B.; Zhang, X.; Xu, N.; Chiang, P.; Rhee, W.; Wang, Z.H. A Dual-Channel Compass/GPS/GLONASS/Galileo Reconfigurable GNSS Receiver in 65 nm CMOS with On-Chip I/Q Calibration. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 1720–1732. [Google Scholar] [CrossRef]
- Tengshe, R.; Kumar, N. Receive Diversity in Analog Feedback Communication. In Proceedings of the 2019 PhD Colloquium on Ethically Driven Innovation and Technology for Society (PhD EDITS), Bangalore, India, 18 August 2019; pp. 1–3. [Google Scholar]
- Aruna, G.; Barman, M.P. Performance Analysis of Advanced Diversity Receivers in the Presence of Multiple Interferers. In Proceedings of the 2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 22–24 March 2018; pp. 1–5. [Google Scholar]
- Kansal, L.; Gaba, G.S.; Chilamkurti, N.; Kim, B.G. Efficient and Robust Image Communication Techniques for 5G Applications in Smart Cities. Energies 2021, 14, 3986. [Google Scholar] [CrossRef]
- Van Le, T.; Lee, K.J. Adaptive perturbation-aided opportunistic hybrid beamforming for mmWave systems. IEEE Trans. Veh. Technol. 2020, 69, 6554–6562. [Google Scholar] [CrossRef]
- Yu, Q.; Han, C.; Bai, L.; Choi, J.; Shen, X.J. Low-complexity multiuser detection in millimeter-wave systems based on opportunistic hybrid beamforming. IEEE Trans. Veh. Technol. 2018, 67, 10129–10133. [Google Scholar] [CrossRef]
- Rezazadeh, N.; Shafai, L. A pattern diversity antenna for ambient RF energy harvesting in multipath environments. In Proceedings of the 2018 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Waterloo, ON, Canada, 19–22 August 2018; pp. 1–4. [Google Scholar]
- Altinel, D.; Kurt, G.K. Diversity combining for RF energy harvesting. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, NSW, Australia, 4–7 June 2017; pp. 1–5. [Google Scholar]
- Male, J.; Porte, J.; Gonzalez, T.; Maso, J.M.; Pijoan, J.L.; Badia, D. Analysis of the Ordinary and Extraordinary Ionospheric Modes for NVIS Digital Communications Channels. Sensors 2021, 21, 2210. [Google Scholar] [CrossRef]
- Jung, S.-Y.; Kim, C.-H.; Park, H.J.; Ha, I.; Han, S.-K. Receive diversity-based SNR improvement in OPDM-OFDMA-PON single-wavelength multiple access. J. Lightwave Technol. 2018, 36, 4871–4879. [Google Scholar] [CrossRef]
- Das, M.; Sahu, B. Effect of MRC diversity on outage probability in mobile networks. In Proceedings of the 2019 Global Conference for Advancement in Technology (GCAT), Bangalore, India, 18–20 October 2019; pp. 1–4. [Google Scholar]
- Harun-Owr-Roshid, M.; Majumder, S. Performance evaluation of a SIMO-OFDM wireless communication system impaired by timing error. In Proceedings of the International Conference on Electrical & Computer Engineering (ICECE 2010), Dhaka, Bangladesh, 18–20 December 2010; pp. 614–617. [Google Scholar]
- He, C.F.; Wang, Y.Y.; Yu, W.B.; Song, L. Underwater Target Localization and Synchronization for a Distributed SIMO Sonar with an Isogradient SSP and Uncertainties in Receiver Locations. Sensors 2019, 19, 1976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nath, N.; Anees, S. Performance Analysis of SIMO-UWOC System. In Proceedings of the 2020 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), New Delhi, India, 14–17 December 2020; pp. 1–4. [Google Scholar]
- Zheng, A.; Huang, Y.; Gao, S.J. Modeling and Spatial Diversity-Based Receiving Improvement of In-Flight UAV FSO Communication Links. Appl. Sci. 2021, 11, 6365. [Google Scholar] [CrossRef]
- Zhao, A.B.; Zeng, C.G.; Hui, J.; Wang, K.R.; Tang, K.Y. Study on Time Reversal Maximum Ratio Combining in Underwater Acoustic Communications. Appl. Sci. 2021, 11, 1509. [Google Scholar] [CrossRef]
- Upaddhyay, V.K.; Chauhan, P.S.; Soni, S.K. Effective capacity analysis of SIMO system with MRC and SC over Inverse-Gamma shadowing. Int. J. Electron. 2021, 109, 181–199. [Google Scholar] [CrossRef]
- Jiang, D.; Cui, Y.J. Enhancing performance of random caching in large-scale wireless networks with multiple receive antennas. IEEE Trans. Wirel. Commun. 2019, 18, 2051–2065. [Google Scholar] [CrossRef]
- Lee, N.; Baccelli, F.; Heath, R.W. Spectral efficiency scaling laws in dense random wireless networks with multiple receive antennas. IEEE Trans. Inf. Theory 2016, 62, 1344–1359. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, F.; Wang, C.; Wang, P.; Ji, Y.J. Outage probability of SIMO MRC receivers with correlated Poisson field of interferers. IEEE Commun. Lett. 2020, 25, 74–78. [Google Scholar] [CrossRef]
- Mobini, M.; Kaddoum, G.; Herceg, M. Design of a SIMO Deep Learning-Based Chaos Shift Keying (DLCSK) Communication System. Sensors 2022, 22, 333. [Google Scholar] [CrossRef]
- Jethi, G.S.; Belwal, N.; Sunori, S.; Juneja, P. Improvement in BER performance of BPSK system using diversity techniques. In Proceedings of the 2017 International Conference on Computing, Communication and Automation (ICCCA), Greater Noida, India, 5–6 May 2017; pp. 6–10. [Google Scholar]
- Yu, Y.; Mroueh, L.; Martins, P.; Vivier, G.; Terre, M. Radio Resource Dimensioning for Low Delay Access in Licensed OFDMA IoT Networks. Sensors 2020, 20, 7173. [Google Scholar] [CrossRef]
- Chung, H.; Kim, J.; Noh, G.; Won, S.H.; Choi, T.; Kim, I. Demonstration of service continuity based on multi-connectivity with cellular and satellite access networks. In Proceedings of the 2021 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 20–22 October 2021; pp. 1400–1402. [Google Scholar]
- Munari, A.; Clazzer, F.J. Spectral Coexistence of QoS-Constrained and IoT Traffic in Satellite Systems. Sensors 2021, 21, 4630. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhou, H.; Luo, H.; Yu, S.J. SERvICE: A software defined framework for integrated space-terrestrial satellite communication. IEEE Trans. Mob. Comput. 2017, 17, 703–716. [Google Scholar] [CrossRef]
- Kumar, G.K.; Tejaswini, K.S.; Prashanthi, U.; Gayathri, T. Maximized Spectral Efficiency and QoS Based Power Allocation Schemes for Co-operative UWB-WBAN. In Proceedings of the 2019 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 26–27 July 2019; pp. 1–5. [Google Scholar]
- Same, M.H.; Gleeton, G.; Gandubert, G.; Ivanov, P.; Landry, R. Multiple Narrowband Interferences Characterization, Detection and Mitigation Using Simplified Welch Algorithm and Notch Filtering. Appl. Sci. 2021, 11, 1331. [Google Scholar] [CrossRef]
- Sklar, B.J. Digital Communications Fundamentals and Applications; Upper Saddle River: New Jersey, NJ, USA, 2001; pp. 167–241. [Google Scholar]
- Zaidi, M.; Bouazzi, I.; Usman, M.; Shamim, M.Z. Virtual Prototype of a wireless sensor node using VHDL-AMS. In Proceedings of the 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 27–28 July 2020; pp. 804–810. [Google Scholar]
- Nikitin, P.; Normark, E.; Wakayama, C.; Shi, R. VHDL-AMS modeling and simulation of BPSK trandceiver system. In Proceedings of the IEEE International Conference on Circuits and Systems for Communications (ICCSC), San Jose, CA, USA, 22 October 2004. [Google Scholar]
- Pratt, T.; Allnutt, J.E. Satellite Communications; John Wiley & Sons: New Delhi, India, 2019. [Google Scholar]
- Wu, Y.; Hu, G.; Jin, F.; Tang, S.J. Multi-Objective Optimisation in Multi-QoS Routing Strategy for Software-Defined Satellite Network. Sensors 2021, 21, 6356. [Google Scholar] [CrossRef] [PubMed]
No. of Sites | Raw | Worst Excluded | Worst Replaced | Best Tailed |
---|---|---|---|---|
1 | 0.26862 | 0.26862 | 0.26862 | 0.26862 |
2 | 0.25414 | 0.21686 | 0.11775 | 0.05261 |
3 | 0.13884 | 0.10295 | 0.0468 | 0.00645 |
4 | 0.12037 | 0.08797 | 0.05483 | 0.00044 |
5 | 0.05619 | 0.03321 | 0.01966 | 2 × 10−5 |
6 | 0.04439 | 0.025 | 0.01785 | 0 |
7 | 0.01624 | 0.00694 | 0.00501 | 0 |
8 | 0.01131 | 0.00445 | 0.00362 | 0 |
9 | 0.00301 | 0.00087 | 0.00069 | 0 |
10 | 0.00183 | 0.00041 | 0.0004 | 0 |
11 | 0.00029 | 5 × 10−5 | 6 × 10−5 | 0 |
12 | 0.00013 | 2 × 10−5 | 4 × 10−5 | 0 |
13 | 3 × 10−5 | 0 | 0 | 0 |
14 | 1 × 10−5 | 0 | 0 | 0 |
Data Length | Worst Excluded | Worst Replaced | Best Tailed |
---|---|---|---|
1 × 106 1 | 9.439559 | 10.967350 | 19.539677 |
1 × 105 | 0.948979 | 1.131833 | 2.061516 |
1 × 104 | 0.108183 | 0.130703 | 0.256498 |
1 × 103 | 0.043260 | 0.050263 | 0.056976 |
2 × 106 | 18.795995 | 21.877629 | 38.563990 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Anbagi, H.N.; Vertat, I. Cooperative Reception of Multiple Satellite Downlinks. Sensors 2022, 22, 2856. https://doi.org/10.3390/s22082856
Al-Anbagi HN, Vertat I. Cooperative Reception of Multiple Satellite Downlinks. Sensors. 2022; 22(8):2856. https://doi.org/10.3390/s22082856
Chicago/Turabian StyleAl-Anbagi, Haidar N., and Ivo Vertat. 2022. "Cooperative Reception of Multiple Satellite Downlinks" Sensors 22, no. 8: 2856. https://doi.org/10.3390/s22082856
APA StyleAl-Anbagi, H. N., & Vertat, I. (2022). Cooperative Reception of Multiple Satellite Downlinks. Sensors, 22(8), 2856. https://doi.org/10.3390/s22082856