Chlorophyll-a Pigment Measurement of Spirulina in Algal Growth Monitoring Using Portable Pulsed LED Fluorescence Lidar System
Abstract
:1. Introduction
2. Theory
2.1. Absorbance
2.2. Fluorescent Form of the Lidar System
3. Materials and Methods
3.1. Spirulina Concentration
3.2. Development of Portable LED Fluorescence Lidar System
3.2.1. Aquarium Tank System
3.2.2. Receiving and Transmitting Systems
3.3. Fluorescence Spectroscopy Measurements
3.4. Excitation–Emission Matrix (EEM) Data Collection and Processing
3.5. Absorbance Measurements
4. Results
4.1. Chlorophyll-a Pigment EEMs
4.2. Range-Resolved Fluorescence Lidar Signal Measurement
4.3. Correlations between Measurements
5. Discussion
5.1. Pulsed LED Fluorescence Lidar System
5.2. Chlorophyll-a Measurements
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Nuhu, A.A. Spirulina (Arthrospira): An Important Source of Nutritional and Medicinal Compounds. J. Mar. Biol. 2013, 2013, 325636. [Google Scholar] [CrossRef] [Green Version]
- Ndjouondo, G.P.; Dibong, S.D.; Wamba, F.O.; Taffouo, V.D. Growth, Productivity and Some Physico-chemical factors of Spirulina platensis Cultivation as Influenced by Nutrients Change. Int. J. Bot. 2017, 13, 67–74. [Google Scholar] [CrossRef]
- Water Environment Partnership in Asia (WEPA). Available online: http://www.wepadb.net/policies/state/philippines/overview (accessed on 3 July 2019).
- Laguna Lake Development Authority (LLDA). Water Quality Report 2009–2012. Available online: https://llda.gov.ph/wp-content/uploads/dox/waterqualityrpt/AWQR_2009-2012.pdf (accessed on 5 March 2020).
- Pasig River Rehabilitation Commission. National Water Quality Status Report 2006–2013. Available online: https://emb.gov.ph/wp-content/uploads/2019/08/NWQSR-2006-2013.pdf (accessed on 5 March 2020).
- Borja, V.; Furio, E.; Gatdula, N.; Iwataki, M. Occurrence of harmful algal blooms caused by various phytoplankton species in the past three decades in Manila Bay, Philippines. Phil. J. Nat. Sci. 2019, 24, 80–90. [Google Scholar]
- United States Environmental Protection Agency (U.S. EPA). Introduction to Phytoremediation. 2000. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab¼NRMRL&dirEntryId¼63433 (accessed on 1 July 2021).
- Chorus, I.; Bartram, J. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; World Health Organization: London, UK, 1999. [Google Scholar]
- Falconer, I.R.; Humoage, A.R. Health risk assessment of cyanobacterial (blue-green algal) toxins in drinking water. Int. J. Environ. Res. Public Health 2010, 2, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Merel, S.; Clement, M.; Thomas, O. State of the art on cyanotoxins in water and their behavior towards chlorine. Toxicon 2010, 55, 677–691. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.E.; Stanley, M.S.; Day, J.G.; Semiao, A.J.C. A comparison of methods for the non-destructive fresh weight determination of filamentous algae for growth rate analysis and dry weight estimation. J. Appl. Phycol. 2017, 29, 2925–2936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadondon, J.G.; Napal, J.P.D.; Abe, K.; De Lara, R.; Vallar, E.A.; Orbecido, A.H.; Belo, L.P.; Galvez, M.C.D. Characterization of water quality and fluorescence measurements of dissolved organic matter in Cabuyao river and its tributaries using excitation-emission matrix spectroscopy. J. Phys. Conf. Ser. 2020, 1593, 012033. [Google Scholar] [CrossRef]
- Cadondon, J.G.; Vallar, E.A.; Belo, L.P.; Orbecido, A.H.; Galvez, M.C.D. UV-Vis Absorbance and Fluorescence Characterization of Pasig River Surface Water Samples towards the Development of an LED Fluorescence Lidar System. Int. J. Adv. Sci. Eng. Inf. Technol. 2021, 11, 968–980. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Bro, R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnol. Oceanogr. Methods 2008, 6, 572–579. [Google Scholar] [CrossRef]
- Cory, R.M.; Mcknight, D.M. Fluorescence Spectroscopy Reveals Ubiquitous Presence of Oxidized and Reduced Quinones in Dissolved Organic Matter. Environ. Sci. Technol. 2005, 39, 8142–8149. [Google Scholar] [CrossRef]
- Coble, P.; Lead, J.; Baker, A.; Reynolds, D.; Spencer, R. Aquatic Organic Matter Fluorescence; Cambridge Environmental Chemistry Series; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Fellman, J.B.; Hood, E.; Spencer, R.G.M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. Limnol. Oceanogr. 2010, 55, 2452–2462. [Google Scholar] [CrossRef]
- Khan, S.I.; Zamyadi, A.; Rao, N.; Li, X.; Stuetz, R.; Henderson, R. Fluorescence spectroscopic characterization of algal organic matter: Towards improved in situ fluorometer development. Environ. Sci. Water Res. Technol. 2019, 5, 417–432. [Google Scholar] [CrossRef]
- Buysschaert, B.; Vermijs, L.; Naka, A.; Boon, N.; De Gusseme, B. Online flow cytometric monitoring of microbial water quality in a full-scale water treatment plant. Clean Water 2018, 1, 16. [Google Scholar] [CrossRef] [Green Version]
- Helmi, K.; David, F.; Di Matrino, P.; Jaffrezic, M.-P.; Ingrand, V. Assessment of flow cytometry for microbial water quality monitoring in cooling tower water and oxidizing treatment efficiency. J. Microbiol. Methods 2018, 152, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, S.; Lipphaus, P.; Green, J.; Parson, S.; Weir, P.; Juskowiak, K.; Jefferson, B.; Jarvis, P.; Nocker, A. Assessing microbiological water quality in drinking water distribution systems with disinfectant residual using flow cytometry. Water Res. 2014, 15, 224–234. [Google Scholar] [CrossRef]
- Kasiske, D.; Klinkmuller, K.D.; Sonneborn, M. Application of high-performance liquid chromatography to water pollution analysis. J. Chromatogr. A 1978, 149, 703–710. [Google Scholar] [CrossRef]
- Anumol, T.; Merel, S.; Clarke, B.O.; Snyder, S.A. Ultra-high performance liquid chromatography tandem mass spectrometry for rapid analysis of trace organic contaminants in water. Chem. Cent. J. 2013, 7, 104. [Google Scholar] [CrossRef] [Green Version]
- Gregor, J.; Marsalek, B. A Simple In Vivo Fluorescence Method for the Selective Detection and Quantification of Freshwater Cyanobacteria and Eukaryotic Algae. Acta Hydrochim. Hydrobiol. 2005, 33, 142–148. [Google Scholar] [CrossRef]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 5th ed.; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Schowengerdt, R.A. Remote Sensing, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Mascarenhas, V.; Keck, T. Marine Optics and Ocean Color Remote Sensing. In YOUMARES 8—Oceans Across Boundaries: Learning from Each Other; Jungblut, S., Liebich, V., Bode, M., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef] [Green Version]
- Leppanen, J.-M.; Rantajarvi, E.; Hallfors, S.; Kruskoo, M.; Lane, V. Unattended monitoring of potentially toxic phytoplankton species in the Baltic Sea. J. Plankton Res. 1995, 17, 891–902. [Google Scholar] [CrossRef]
- Rantajarvi, E.; Olsonen, R.; Hallfors, S.; Leppanen, J.-M.; Raateoja, M. Effect of sampling frequency on detection of natural variability in phytoplankton: Unattended high-frequency measurements on board ferries in the Baltic Sea. ICES J. Mar. Sci. 1998, 55, 697–704. [Google Scholar] [CrossRef] [Green Version]
- Boss, E.; Haëntjens, N.; Ackleson, S.G.; Balch, B.; Chase, A.; Dall’Olmo, G.; Freeman, S.; Liu, Y.; Loftin, J.; Neary, W.; et al. Ocean Optics & Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation; IOCCG Protocol Series; Inherent Optical Property Measurements and Protocols: Best Practices for the Collection and Processing of Ship-Based Underway Flow-Through Optical Data; Neeley, A.R., Mannino, A., Eds.; IOCCG: Dartmouth, NS, Canada, 2019; Volume 4.0. [Google Scholar] [CrossRef]
- Li, Y.; Yu, K.; Zhang, W.; Li, D.; Zhao, Z.; Jiang, X.; Jin, D.; Shang, B.; Wang, H. Progress of Airborne Lidar of Ocean Chlorophyll Observations Including Algorithm and Instruments. IOP Conf. Ser. Mater. Sci. Eng. 2020, 730, 012046. [Google Scholar] [CrossRef]
- Yoder, J.A.; Aiken, J.; Swift, R.N.; Hoge, F.E.; Stegmann, P.M. Spatial variability in near surface chlorophyll a fluorescence measured by the Airborne Oceanographic Lidar (AOL). Deep. Sea Res. Part II Top. Stud. Oceanogr. 1993, 40, 37–53. [Google Scholar] [CrossRef]
- Papenfus, M.; Schaeffer, B.; Pollard, A.I.; Loftin, K. Exploring the potential value of satellite remote sensing to monitor chlorophyll-a for US lakes and reservoirs. Environ. Monit. Assess. 2020, 192, 808. [Google Scholar] [CrossRef]
- Zheng, G.; DiGiacomo, P.M. Remote sensing of chlorophyll-a in coastal waters based on the light absorption coefficient of phytoplankton. Remote Sens. Environ. 2017, 201, 331–341. [Google Scholar] [CrossRef]
- Darecki, M.; Stramski, D. An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea. Remote Sens. Environ. 2004, 89, 326–350. [Google Scholar] [CrossRef]
- Garaba, S.P.; Zielinski, O. An assessment of water quality monitoring tools in an estuarine system. Remote Sens. Appl. Soc. Environ. 2015, 2, 1–10. [Google Scholar] [CrossRef]
- Topp, S.N.; Pavelsky, T.M.; Jensen, D.; Simard, M.; Ros, M.R.V. Research Trends in the Use of Remote Sensing for Inland Water Quality Science: Moving Towards Multidisciplinary. Water 2019, 12, 169. [Google Scholar] [CrossRef] [Green Version]
- Diaz, J.C.F.; Carter, W.E.; Shrestha, R.L.; Glennie, C.L. LiDAR Remote Sensing. In Handbook of Satellite Applications; Pelton, J., Madry, S., Camacho-Lara, S., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Mcllrath, T.J. Fluorescence Lidar. Opt. Eng. 1980, 19, 194494. [Google Scholar] [CrossRef]
- Measures, R.M.; Bristow, M. The development of a laser fluorosensor for remote environmental probing. In Proceedings of the Joint Conference on Sensing of Environmental Pollutants, Palo Alto, CA, USA, 8–10 November 1971; pp. 421–422. [Google Scholar]
- Barbini, R.; Colao, F.; Fantoni, R.; Paluci, A.; Ribezzo, S. Differential lidar fluorosensor system used for phytoplankton bloom and seawater quality monitoring in Antartica. Int. J. Remote Sens. 2001, 22, 369–384. [Google Scholar] [CrossRef]
- Zeng, L.; Li, D. Development of In Situ Sensors for Chlorophyll Concentration Measurement. J. Sens. 2015, 2015, 903509. [Google Scholar] [CrossRef] [Green Version]
- Saito, Y.; Ichihara, K.; Morishita, K.; Uchiyama, K.; Kobayashi, F.; Tomida, T. Remote Detection of the Fluorescence Spectrum of Natural Pollens Floating in the Atmosphere Using a Laser-Induced-Fluorescence Spectrum (LIFS) Lidar. Remote Sens. 2018, 10, 1533. [Google Scholar] [CrossRef] [Green Version]
- Saito, Y.; Kakuda, K.; Yokohama, M.; Kubota, T.; Tomida, T.; Park, H.-D. Design and daytime performance of laser-induced fluorescence spectrum lidar for simultaneous detection of multiple components, dissolved organic matter, phycocyanin, and chlorophyll in river water. Appl. Opt. 2016, 55, 6727–6734. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Takano, K.; Kobayashi, F.; Kobayashi, K.; Park, H.-D. Development of a UV laser-induced fluorescence lidar for monitoring blue-green algae in Lake Suwa. Appl. Opt. 2014, 53, 7030–7036. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.C.; Pelevin, V.V.; Goncharenko, I.; Kovács, A.W.; Zlinszky, A.; Présing, M.; Horváth, H.; Nicolás-Perea, V.; Balzter, H.; Tóth, V.R. Ultraviolet Fluorescence LiDAR (UFL) as a Measurement Tool for Water Quality Parameters in Turbid Lake Conditions. Remote Sens. 2013, 5, 4405–4422. [Google Scholar] [CrossRef]
- UN Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 10 October 2021).
- Albeanu, D.F.; Soucy, E.; Sato, T.F.; Meister, M.; Murthy, V.N. LED arrays as cost effective and efficient light sources for widefield microscopy. PLoS ONE 2008, 3, e2146. [Google Scholar] [CrossRef] [Green Version]
- Cadondon, J.G.; Napal, J.P.D.; Shiina, T.; Vallar, E.A.; Galvez, M.C.D. Pulsed LED light source for fluorescence spectroscopy applications. AIP Conf. Proc. 2021, 2319, 090001. [Google Scholar]
- Jin, D.; Connally, R.; Piper, J. Long-lived visible luminescence of UV LEDs and impact on LED excited time-resolved fluorescence applications. J. Phys. D Appl. Phys. 2006, 39, 461. [Google Scholar] [CrossRef]
- Rodenko, O.; Fodgaard, H.; Tidemard-Lichtenberg, P.; Petersen, P.; Pedersen, C. 340 nm pulsed UV LED system for europium-based time-resolved fluorescence detection immunoessays. Opt. Express 2006, 24, 22135–22143. [Google Scholar] [CrossRef] [Green Version]
- Sharikova, A.V. UV Laser and LED Induced Fluorescence Spectroscopy for Detection of Trace Amounts of Organics in Drinking Water and Water Sources. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, 2009. [Google Scholar]
- Koyama, M.; Shiina, T. Light Source Module for LED Mini-Lidar. Rev. Laser Eng. 2011, 39, 617–621. [Google Scholar] [CrossRef] [Green Version]
- Shiina, T. LED Mini Lidar for Atmospheric Application. Sensors 2019, 19, 569. [Google Scholar] [CrossRef] [Green Version]
- IUPAC. Compendium of Chemical Terminology, 2nd ed.; McNaught, A.D., Wilkinson, A., Eds.; Blackwell Scientific Publications: Hoboken, NJ, USA, 1999. [Google Scholar]
- Measures, R. Laser Remote Sensing; Wiley Publishing: Hoboken, NJ, USA, 1984. [Google Scholar]
- Mishra, T.; Joshi, M.; Singh, S.; Jain, P.; Kaur, R.; Ayub, S.; Kaur, K. Spirulina: The Beneficial Use. Int. J. Appl. Microbiol. Sci. 2013, 2, 21–35. [Google Scholar]
- Cola, L.M.; Bertol, C.D.; Ferreira, D.J.; Bavaresco, J.; Costa, J.A.V.; Bertolin, T.E. Thermal and photo-stability of the antioxidant potential of Spirulina platensis powder. Braz. J. Biol. 2017, 77, 332–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantweel, H. (Ed.) Blanks in Method Validation—Supplement to Eurachem Guide the Fitness for Purpose of Analytical Methods, 1st ed.; Eurachem: Windsor, UK, 2011; Available online: https://www.eurachem.org/images/stories/Guides/pdf/MV_Guide_Blanks_supplement_EN.pdf (accessed on 2 April 2022).
- Hansen, A.M.; Kraus, T.; Pellerin, B.A.; Fleck, J.A.; Downing, B.D.; Bergamaschi, B.A. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. Limnol. Oceanogr. 2016, 61, 1015–1032. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Pang, W.; Ge, S.; Yu, H.; Dai, C.; Huang, X.; Li, J.; Zhao, M. Characteristics of Fluorescence Spectra, UV Spectra, and Specific Growth Rates during the Outbreak of Toxic Microcystis aeruginosa FACHB-905 and Non-Toxic FACHB-469 under Different Nutrient Conditions in a Eutrophic Microcosmic Simulation Device. Water 2020, 12, 2305. [Google Scholar] [CrossRef]
- Brogi, S.R.; Charriere, B.; Gonnelli, M.; Vaultier, F.; Sempere, R.; Vestri, S.; Santinelli, C. Effect of UV and Visible Radiation on Optical Properties of Chromophoric Dissolved Organic Matter Released by Emiliania huxleyi. J. Mar. Sci. Eng. 2020, 8, 888. [Google Scholar] [CrossRef]
- Sartory, D.P.; Grobbelaar, J.U. Extraction of chlorophyll-a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 1984, 114, 177–187. [Google Scholar] [CrossRef]
- Akimoto, S.; Yokono, M.; Hamda, F.; Teshigahara, A.; Aikawa, S.; Kondo, A. Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochim. Biophys. Acta Bioenerg. 2012, 1817, 1483–1489. [Google Scholar] [CrossRef] [Green Version]
- Leloup, M.; Pallier, V.; Nicolau, R.; Feuillade-Cathalifau, G. Assessing Transformations of Algal Organic Matter in the Long Term: Impacts of Humification-like Processes. Int. J. Mol. Sci. 2015, 16, 18096–18110. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, L.; Roddick, F. Impact of the Interaction between Aquatic Humic Substance and Algal Organic Matter on the Fouling of a Ceramic Microfiltration Membrane. Membranes 2015, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Hanna, H.; Abd, E.-B. Over Production of Phycocyanin Pigment in Blue Green Alga Spirulina sp. Inhibitory Effect on Growth of Ehrlich Ascite Carcinoma Cells. J. Med. Sci. 2003, 3, 314–324. [Google Scholar]
- Nanda, A.; Mahapatra, A.; Mohapatra, B.; Mahapatra, A.; Mahapatra, A. Multiple comparison test by Tukey’s honestly significant difference (HSD): Do the confident level control type I error. Int. J. Stat. Appl. Math. 2021, 6, 59–65. [Google Scholar] [CrossRef]
- Schlattmann, P.; Dirnagl, U. Statistics in experimental cerebrovascular research: Comparison of more than two groups with a continuous outcome variable. J. Cereb. Blood Flow Metab. 2010, 30, 1558–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aumnate, C.; Pongwisuthiruchte, A.; Pattananuwat, P.; Potiyaraj, P. Fabrication of ABS/Graphene Oxide Composite Filament for Fused Filament Fabrication (FFF) 3D Printing. Adv. Mater. Sci. Eng. 2018, 2018, 2830437. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, M.J.; Garcin CHille, R.; Harrison, S. Interference by pigment in the estimation of microalgal biomass concentration by optical density. J. Microbiol. Methods 2011, 85, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Michael, A.; Kyewalyanga, M.S.; Lugomela, C.V. Biomass and nutritive value of Spirulina (Arthrospira fusiformis) cultivated in a cost-effective medium. Ann. Microbiol. 2019, 69, 1387–1395. [Google Scholar] [CrossRef]
- Rinawati, M.; Sari, L.A.; Pursetyo, K.T. Chlorophyll and carotenoids analysis spectrometer using method on microalgae. IOP Conf. Ser. Earth Environ. Sci. 2020, 444, 012056. [Google Scholar] [CrossRef]
- Smith, R.C.; Baker, K.S.; Dustan, P. Fluorometric Technique for the Measurement of Oceanic Chlorophyll in Support of Remote Sensing; SIO Reference 81–17; Scripps Institution of Oceanography: La Jolla, CA, USA, 1981; pp. 1–13. [Google Scholar]
- Harun, M.; Peralta, H.M.M.; Gonawan, N.H.; Shahri, Z. Effect of Mixing on the Density and Chlorophyll-a Content on Botryococcus sp. J. Sci. Technol. 2018, 10, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Peterson, R.; Oja, V.; Laisk, A. Chlorophyll fluorescence at 680 and 730 nm and leaf photosynthesis. Photosynth. Res. 2001, 70, 185–196. [Google Scholar] [CrossRef]
- Ziegler, A.C. Issues Related to Use of Turbidity Measurements as a Surrogate for Suspended Sediement. In Proceedings of the Turbidity and Other Sediment Surrogates Workshop, Reno, NV, USA, 30 April–2 May 2002. [Google Scholar]
- Sadar, M. Turbidity Standards; Technical Information Series, Booklet 12; Hach Company: Loveland, CO, USA, 1985. [Google Scholar]
- Omar, A.F.B.; MatJafri, M.Z.B. Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Quality. Sensors 2009, 9, 8311–8335. [Google Scholar] [CrossRef]
- Eco NTU Marine Turbidity Logger. Available online: https://ecoenvironmental.com.au/product/water-monitoring/eco-ntu-marine-turbidity-logger/ (accessed on 19 December 2021).
- IMOS. Recommended Changes to Calibration Protocol for IMOS Backscatter and Turbidity Sensor. Available online: https://imos.org.au/fileadmin/user_upload/shared/Bio-optical_working_group/Backscatter_Turbidity_User_Notes__final.pdf (accessed on 19 December 2021).
- Boss, E.; Taylor, L.; Gilbert, S.; Gundersen, K.; Hawley, N.; Janzen, C.; Johengen, T.; Purcell, H.; Robertson, C.; Schar, D.; et al. Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters. Limnol. Oceanogr. Methods 2009, 7, 803–810. [Google Scholar] [CrossRef]
- Gitelson, A.A. The peak near 700 nm on radiance spectra of algae and water: Relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens. 1992, 13, 3367–3373. [Google Scholar] [CrossRef]
- Gitelson, A.; Garbuzov, G.; Szilagyi, F.; Mittenzwey, K.; Karnieli, A.; Kaiser, A. Quantitative remote sensing methods for real-time monitoring of inland waters quality. Int. J. Remote Sens. 1993, 14, 1269–1295. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, H.; Zhu, L.; Lin, F. Quantitative inversion model of water chlorophyll-a based on spectral analysis. Procedia Environ. Sci. 2011, 10, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Wei, Y.; Lv Guonian Yuan, Z. Remote estimate of chlorophyll-a concentration in turbid water using a spectral index: A case study in Taihu Lake, China. J. Appl. Remote Sens. 2013, 7, 073465. [Google Scholar] [CrossRef] [Green Version]
Transmitter | |
LED Name/Brand | Nichia, NCSU034C |
Wavelength | 385 nm |
Peak power | 830 mW |
Resolution | 1.2 m |
Bandwidth | 10.92 ns |
Repetition | 500 kHz |
Beam diameter | 50 mmΦ |
Beam divergence | 5 mrad |
Receiver | |
Telescope | Schmidt–Cassegrain |
Beam diameter | 100 mmΦ |
Beam divergence | 3 mrad |
Bandpass filters: | |
At 680 nm: | |
-Thorlabs (FB680-10) | 680 nm ± 5 nm |
At 700 nm: | |
-Thorlabs (FB700-10) | 700 nm ± 5 nm |
Detection device | Photomultiplier tube, Hamamatsu (R3650P) |
Photon Counting Board | |
Photon Counting Device/Brand | Spartan 6 (FPGA device) Trimatiz Co., Ltd., Photon tracker |
System lock | 550 MHz |
BIN Width | 5 ns (0.75 m) |
BIN length | 50 |
Acquisition count | 167,777,214 (max) |
Trigger Input Threshold level | 300 mV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cadondon, J.G.; Ong, P.M.B.; Vallar, E.A.; Shiina, T.; Galvez, M.C.D. Chlorophyll-a Pigment Measurement of Spirulina in Algal Growth Monitoring Using Portable Pulsed LED Fluorescence Lidar System. Sensors 2022, 22, 2940. https://doi.org/10.3390/s22082940
Cadondon JG, Ong PMB, Vallar EA, Shiina T, Galvez MCD. Chlorophyll-a Pigment Measurement of Spirulina in Algal Growth Monitoring Using Portable Pulsed LED Fluorescence Lidar System. Sensors. 2022; 22(8):2940. https://doi.org/10.3390/s22082940
Chicago/Turabian StyleCadondon, Jumar G., Prane Mariel B. Ong, Edgar A. Vallar, Tatsuo Shiina, and Maria Cecilia D. Galvez. 2022. "Chlorophyll-a Pigment Measurement of Spirulina in Algal Growth Monitoring Using Portable Pulsed LED Fluorescence Lidar System" Sensors 22, no. 8: 2940. https://doi.org/10.3390/s22082940
APA StyleCadondon, J. G., Ong, P. M. B., Vallar, E. A., Shiina, T., & Galvez, M. C. D. (2022). Chlorophyll-a Pigment Measurement of Spirulina in Algal Growth Monitoring Using Portable Pulsed LED Fluorescence Lidar System. Sensors, 22(8), 2940. https://doi.org/10.3390/s22082940