Simple and Robust Microfabrication of Polymeric Piezoelectric Resonating MEMS Mass Sensors
Abstract
:1. Introduction
2. A Simple Microfabrication Flow for Polymeric Piezoelectric MEMS Devices
2.1. Depiction of the Processing Flow
2.2. MEMS Design to Test Fabrication Technology Robustness
2.3. Fabrication of the MEMS Test Structures
2.4. Characterization of Fabricated MEMS Test Structures for Technology Validation
2.4.1. Optical Inspection
2.4.2. Mechanical Resonance Measurement
3. Piezoelectric MEMS Mass Sensors Based on Polymeric Thin Films
3.1. Designs for the Piezoelectric Mass Sensor
3.2. Fabrication of the Polymeric Piezoelectric MEMS Mass Sensors
3.3. Characterization of the Piezoelectric MEMS Mass Sensors
3.3.1. Optical Inspection
3.3.2. Mass Estimation for the SU-8 Micropillar Load and the MEMS Mass Sensor
3.3.3. Mechanical Resonance Measurement of the MEMS Mass Sensors
3.3.4. Sensitivity Estimation and Comparison for the MEMS Mass Sensors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Pastina, A.; Villanueva, L.G. Suspended micro/nano channel resonators: A review. J. Micromech. Microeng. 2020, 30, 043001. [Google Scholar] [CrossRef]
- Gabrielson, T.B. Mechanical-thermal noise in micromachined acoustic and vibration sensors. IEEE Trans. Electron Devices 1993, 40, 903–909. [Google Scholar] [CrossRef] [Green Version]
- Hurk, R.V.D.; Baghelani, M.; Chen, J.; Daneshmand, M.; Evoy, S. Al-Mo nanocomposite functionalization for membrane-based resonance detection of bovine Herpesvirus-1. Sens. Actuators A Phys. 2019, 296, 186–191. [Google Scholar] [CrossRef]
- Scarpa, E.; Mastronardi, V.M.; Guido, F.; Algieri, L.; Qualtieri, A.; Fiammengo, R.; Rizzi, F.; De Vittorio, M. Wearable piezoelectric mass sensor based on pH sensitive hydrogels for sweat pH monitoring. Sci. Rep. 2020, 10, 10854. [Google Scholar] [CrossRef] [PubMed]
- Joshi, P.; Kumar, S.; Jain, V.K.; Akhtar, J.; Singh, J. Distributed MEMS Mass-Sensor Based on Piezoelectric Resonant Micro-Cantilevers. J. Microelectromech. Syst. 2019, 28, 382–389. [Google Scholar] [CrossRef]
- Ismail, A.K.; Burdess, J.S.; Harris, A.J.; McNeil, C.J.; Hedley, J.; Chang, S.C.; Suarez, G. The principle of a MEMS circular diaphragm mass sensor. J. Micromech. Microeng. 2006, 16, 1487–1493. [Google Scholar] [CrossRef]
- Hu, Z.; Hedley, J.; Keegan, N.; Spoors, J.; Waugh, W.; Gallacher, B.; Boillot, F.-X.; Collet, J.; McNeil, C. Design, fabrication and characterization of a piezoelectric MEMS diaphragm resonator mass sensor. J. Micromech. Microeng. 2013, 23, 125019. [Google Scholar] [CrossRef]
- Burg, T.P.; Manalis, S.R. Suspended microchannel resonators for biomolecular detection. Appl. Phys. Lett. 2003, 83, 2698–2700. [Google Scholar] [CrossRef] [Green Version]
- Stockslager, M.A.; Olcum, S.; Knudsen, S.M.; Kimmerling, R.J.; Cermak, N.; Payer, K.R.; Agache, V.; Manalis, S.R. Rapid and high-precision sizing of single particles using parallel suspended microchannel resonator arrays and deconvolution. Rev. Sci. Instrum. 2019, 90, 085004. [Google Scholar] [CrossRef]
- Belardinelli, P.; Souza, S.N.F.D.; Verlinden, E.; Wei, J.; Staufer, U.; Alijani, F.; Ghatkesar, M.K. Second flexural and torsional modes of vibration in suspended microfluidic resonator for liquid density measurements. J. Micromech. Microeng. 2020, 30, 055003. [Google Scholar] [CrossRef]
- Janshoff, A.; Galla, H.-J.; Steinem, C. Piezoelectric mass-sensing devices as biosensors—An alternative to optical biosensors? Angew. Chem. Int. Ed. 2000, 39, 4004–4032. [Google Scholar] [CrossRef]
- Sone, H.; Okano, H.; Hosaka, S. Picogram mass sensor using piezoresistive cantilever for biosensor. Jpn. J. Appl. Phys. 2004, 43, 4663–4666. [Google Scholar] [CrossRef]
- Turner, K.; Zhang, W. Design and analysis of a dynamic MEM chemical sensor. In Proceedings of the 2001 American Control Conference (Cat. No. 01CH37148), Arlington, VA, USA, 25–27 June 2001; Volume 2, pp. 1214–1218. [Google Scholar] [CrossRef]
- Chun, K.Y.; Chun, J. Analysis of Serum Vedolizumab Concentrations in Over 800 Patient Samples: Distribution of Drug and Anti-Drug Ab Levels and Serial Measurement Trends. Am. J. Gastroenterol. 2018, 113, S416. [Google Scholar] [CrossRef]
- Chun, K.; Yang, J. P108 Serum Vedolizumab and Anti-Vedolizumab Antibody: Analysis of 6500 Patient Results Using Lab Developed Electrochemiluminescent Immunoassays (ECLIA). Am. J. Gastroenterol. 2019, 114, S28. [Google Scholar] [CrossRef]
- Lee, C.C.; Southgate, R.; Jiao, C.; Gersz, E.; Owen, J.R.; Kates, S.L.; Beck, C.A.; Xie, C.; Daiss, J.L.; Post, V.; et al. Deriving a dose and regimen for anti-glucosaminidase antibody passive-immunization for patients with Staphylococcus aureus osteomyelitis. Eur. Cells Mater. 2020, 39, 96. [Google Scholar] [CrossRef] [PubMed]
- Leeman, M.; Choi, J.; Hansson, S.; Storm, M.U.; Nilsson, L. Proteins and antibodies in serum, plasma, and whole blood—size characterization using asymmetrical flow field-flow fractionation (AF4). Anal. Bioanal. Chem. 2018, 410, 4867–4873. [Google Scholar] [CrossRef] [Green Version]
- Ducrot, P.-H.; Dufour, I.; Ayela, C. Optimization Of PVDF-TrFE Processing Conditions For The Fabrication Of Organic MEMS Resonators. Sci. Rep. 2016, 6, 19426. [Google Scholar] [CrossRef] [Green Version]
- Devi, M.I.; Nallamuthu, N.; Rajini, N.; Kumar, T.S.M.; Siengchin, S.; Rajulu, A.V.; Ayrilmis, N. Biodegradable poly(propylene) carbonate using in-situ generated CuNPs coated Tamarindus indica filler for biomedical applications. Mater. Today Commun. 2019, 19, 106–113. [Google Scholar] [CrossRef]
- Kumar, T.S.M.; Rajini, N.; Siengchin, S.; Rajulu, A.V.; Ayrilmis, N. Influence of Musa acuminate bio-filler on the thermal, mechanical and visco-elastic behavior of poly (propylene) carbonate biocomposites. Int. J. Polym. Anal. Charact. 2019, 24, 439–446. [Google Scholar] [CrossRef]
- Wang, D.; Yu, J.; Zhang, J.; He, J.; Zhang, J. Transparent bionanocomposites with improved properties from poly(propylene carbonate) (PPC) and cellulose nanowhiskers (CNWs). Compos. Sci. Technol. 2013, 85, 83–89. [Google Scholar] [CrossRef]
- Ge, C.; Cretu, E. MEMS transducers low-cost fabrication using SU-8 in a sacrificial layer-free process. J. Micromech. Microeng. 2017, 27, 045002. [Google Scholar] [CrossRef]
- Ge, C.; Cretu, E. Design and fabrication of SU-8 CMUT arrays through grayscale lithography. Sens. Actuators A Phys. 2018, 280, 368–375. [Google Scholar] [CrossRef]
- Ge, C.; Cretu, E. A sacrificial-layer-free fabrication technology for MEMS transducer on flexible substrate. Sens. Actuators A Phys. 2019, 286, 202–210. [Google Scholar] [CrossRef]
- Ge, C.; Cretu, E. A Simple and Robust Fabrication Process for SU-8 In-Plane MEMS Structures. Micromachines 2020, 11, 317. [Google Scholar] [CrossRef] [Green Version]
- Burnett, R.; Harris, A.; Ortiz, P.; Hedley, J.; Burdess, J.; Keegan, N.; Spoors, J.; McNeil, C. Electronic detection strategies for a MEMS-based biosensor. J. Microelectromech. Syst. 2012, 22, 276–284. [Google Scholar] [CrossRef]
- Ricciardi, C.; Fiorilli, S.; Bianco, S.; Canavese, G.; Castagna, R.; Ferrante, I.; Digregorio, G.; Marasso, S.L.; Napione, L.; Bussolino, F. Development of microcantilever-based biosensor array to detect Angiopoietin-1, a marker of tumor angiogenesis. Biosens. Bioelectron. 2010, 25, 1193–1198. [Google Scholar] [CrossRef]
- Lin, A.T.-H.; Yan, J.; Seshia, A.A. Electrically addressed dual resonator sensing platform for biochemical detection. J. Microelectromech. Syst. 2012, 21, 34–43. [Google Scholar] [CrossRef]
- Sökmen, Ü.; Stranz, A.; Waag, A.; Ababneh, A.; Seidel, H.; Schmid, U.; Peiner, E. Evaluation of resonating Si cantilevers sputter-deposited with AlN piezoelectric thin films for mass sensing applications. J. Micromech. Microeng. 2010, 20, 064007. [Google Scholar] [CrossRef]
MEMS Mass Sensor Design | Example of Applications | Strength | Weakness |
---|---|---|---|
Suspended microfluidic resonator (SMR) | Single-cell, single-DNA, and single-protein analysis [1] | Ultra-high sensitivity | Complex fabrication flow and high cost |
MEMS membrane/cantilever resonators | Concentration/Distributed mass detection, such as virus, antibody, and PH value in body fluids [3,4,5,6,7] | Simple structure and low fabrication complexity | Moderate sensitivity |
Name | Specification | Manufacturer/Vendor | ||||
---|---|---|---|---|---|---|
Piezoelectric PVDF-TrFE film | Thickness | Piezoelectric coefficient | Young’s modulus | Density | PolyK@, Philipsburg, Pennsylvania, USA | |
d33 | d31, d32 | |||||
15 µm | >25 pC/N | 8 pC/N | >2.5 GPa | 1800 kg/m3 | ||
Kapton HN polyimide | Thickness | Poisson ratio | Young’s modulus | Density | Dupont@, USA/Cole-Parmer@, Canada | |
25 µm (membrane) | 0.34 | 2.5 GPa | 1420 kg/m3 | |||
150 µm (spacer) | ||||||
Polypropylene carbonate | Dissolved in acetone, 25 wt% | Empower Material, New Castle, DE, USA |
Process | Equipment | Processing Parameter | |||||
---|---|---|---|---|---|---|---|
Laser micromachining for polyimide structural layer (25 µm) | Oxford@ Laser system | Intensity | Repeat time | Laser moving speed | |||
100% | 3 | 0.5 mm/s | |||||
Laser micromachining for polyimide spacer layer and polyimide shadow masks (150 µm) | 100% | 12 | 0.5 mm/s | ||||
Laser micromachining for PVDF-TrFE (15 µm) | 50% | 2 | 2 mm/s | ||||
E-beam evaporation of 100 nm aluminum | DeeDirector@ load-lock E-beam PVD system | Current | Deposition rate | ||||
190~210 mA | 3.9 Å/s | ||||||
Spin-coating of the PPC as adhesives | Ni-Lo@ 5 Vaccum spin-coater | Spin-coating speed | Resulted thickness | ||||
2500 rpm | 300~500 nm | ||||||
Adhesive laminations | Fortex Engineering@ Dry film laminator Model 304 | Lamination speed | Lamination temperature | ||||
1 mm/s | 80 °C |
Equipment: Intelligent Micropatterning@ SF-100 Maskless Lithography System | ||||||||
---|---|---|---|---|---|---|---|---|
Spin-Coating Speed | Soft Baking | 365 nm UV Exposure | Post-Exposure Baking | Developing | ||||
1500 RPM | 65 °C | 95 °C | Intensity | Duration | 65 °C | 95 °C | Chemical | Immersion |
3 min | 6 min | 10 mW/cm2 | 10 s | 6 min | 3 min | PGMEA | 10 min |
50 Unloaded MEMS Mass Sensor | 50 Loaded MEMS Mass Sensor | |
---|---|---|
Average resonant frequency | 473.97 kHz | 417.24 kHz |
Standard deviation | 7.82 kHz (1.65%) | 31.13 kHz (7.46%) |
Reference | Microstructure Type | Material | Fabrication Method | Resonant Frequency | Sensitivity |
---|---|---|---|---|---|
[26] | Circular membranes | Silicon | Standard micromachining flow for silicon MEMS devices | 3.62 MHz | 4.81 Hz/pg |
This work | Circular membranes | Polyimide and PVDF | Laser micromachining and adhesive lamination | 474 kHz | 340 Hz/ng |
[5] | Cantilever | Silicon, ZnO | Standard micromachining flow for MEMS devices | 736 kHz | 313 Hz/ng |
[27] | Cantilever | Silicon | Standard micromachining flow for MEMS devices | 44.5 kHz | 40 Hz/ng |
[28] | Trampoline | Silicon | Standard micromachining flow for MEMS devices | 3.15 MHz | 34 Hz/ng |
[29] | Cantilever | Silicon, AlN | Micromachining flows based on ICP etching, and RIE | 1.68 kHz | 8.3 Hz/µg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, C.; Cretu, E. Simple and Robust Microfabrication of Polymeric Piezoelectric Resonating MEMS Mass Sensors. Sensors 2022, 22, 2994. https://doi.org/10.3390/s22082994
Ge C, Cretu E. Simple and Robust Microfabrication of Polymeric Piezoelectric Resonating MEMS Mass Sensors. Sensors. 2022; 22(8):2994. https://doi.org/10.3390/s22082994
Chicago/Turabian StyleGe, Chang, and Edmond Cretu. 2022. "Simple and Robust Microfabrication of Polymeric Piezoelectric Resonating MEMS Mass Sensors" Sensors 22, no. 8: 2994. https://doi.org/10.3390/s22082994
APA StyleGe, C., & Cretu, E. (2022). Simple and Robust Microfabrication of Polymeric Piezoelectric Resonating MEMS Mass Sensors. Sensors, 22(8), 2994. https://doi.org/10.3390/s22082994