Realization of a PEDOT:PSS/Graphene Oxide On-Chip Pseudo-Reference Electrode for Integrated ISFETs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrode Fabrication
2.3. SiNW-FET Fabrication
2.4. Impedance Measurements
2.5. OCP Measurements
2.6. Electrical Measurements
3. Results and Discussion
3.1. Electrode Preparation and Characterization
3.2. Sensing Performance
4. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergveld, P. Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements. IEEE Trans. Biomed. Eng. 1970, 17, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Pachauri, V.; Ingebrandt, S. Biologically sensitive field-effect transistors: From ISFETs to NanoFETs. Essays Biochem. 2016, 60, 81–90. [Google Scholar] [PubMed]
- Ohno, Y.; Maehashi, K.; Matsumoto, K. Label-free biosensors based on aptamer-modified graphene field-effect transistors. J. Am. Chem. Soc. 2010, 132, 18012–18013. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.L.; Munief, W.M.; Heib, F.; Schmitt, M.; Britz, A.; Grandthyl, S.; Muller, F.; Neurohr, J.U.; Jacobs, K.; Benia, H.M.; et al. Front-End-of-Line Integration of Graphene Oxide for Graphene-Based Electrical Platforms. Adv. Mater. Technol. 2018, 3, 14. [Google Scholar] [CrossRef]
- Figueroa-Miranda, G.; Liang, Y.; Suranglikar, M.; Stadler, M.; Samane, N.; Tintelott, M.; Lo, Y.; Tanner, J.A.; Vu, X.T.; Knoch, J. Delineating charge and capacitance transduction in system-integrated graphene-based BioFETs used as aptasensors for malaria detection. Biosens. Bioelectron. 2022, 208, 114219. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, K.; Burghard, M. Biosensors based on carbon nanotubes. Anal. Bioanal. Chem. 2006, 385, 452–468. [Google Scholar] [CrossRef]
- Torsi, L.; Magliulo, M.; Manoli, K.; Palazzo, G.J.C.S.R. Organic field-effect transistor sensors: A tutorial review. Chem. Soc. Rev. 2013, 42, 8612–8628. [Google Scholar] [CrossRef]
- Pachauri, V.; Vlandas, A.; Kern, K.; Balasubramanian, K.J.S. Site-Specific Self-Assembled Liquid-Gated ZnO Nanowire Transistors for Sensing Applications. Small 2010, 6, 589–594. [Google Scholar] [CrossRef]
- Kaisti, M. Detection principles of biological and chemical FET sensors. Biosens Bioelectron 2017, 98, 437–448. [Google Scholar] [CrossRef]
- Simonis, A.; Dawgul, M.; Luth, H.; Schoning, M.J. Miniaturised reference electrodes for field-effect sensors compatible to silicon chip technology. Electrochim. Acta 2005, 51, 930–937. [Google Scholar] [CrossRef]
- Yee, S.; Jin, H.; Lam, L.K.C. Miniature liquid junction reference electrode with micromachined silicon cavity. Sens. Actuators 1988, 15, 337–345. [Google Scholar] [CrossRef]
- Tintelott, M.; Pachauri, V.; Ingebrandt, S.; Vu, X.T. Process variability in top-down fabrication of silicon nanowire-based biosensor arrays. Sensors 2021, 21, 5153. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Chen, S.; Solomon, P.; Zhang, Z. Ion sensing with single charge resolution using sub–10-nm electrical double layer–gated silicon nanowire transistors. Sci. Adv. 2021, 7, eabj6711. [Google Scholar] [CrossRef] [PubMed]
- Bergveld, P. Thirty years of ISFETOLOGY—What happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B Chem. 2003, 88, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Lewenstam, A. Handbook of Reference Electrodes; Inzelt, G., Lewenstam, A., Scholz, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–344. ISBN 978-3-642-36187-6. [Google Scholar]
- Yang, H.; Kang, S.K.; Choi, C.A.; Kim, H.; Shin, D.-H.; Kim, Y.S.; Kim, Y.T. An iridium oxide reference electrode for use in microfabricated biosensors and biochips. Lab Chip 2004, 4, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Shinwari, M.W.; Zhitomirsky, D.; Deen, I.A.; Selvaganapathy, P.R.; Deen, M.J.; Landheer, D. Microfabricated Reference Electrodes and their Biosensing Applications. Sensors 2010, 10, 1679–1715. [Google Scholar] [CrossRef]
- Petsagkourakis, I.; Kim, N.; Tybrandt, K.; Zozoulenko, I.; Crispin, X. Poly(3,4-ethylenedioxythiophene): Chemical Synthesis, Transport Properties, and Thermoelectric Devices. Adv. Electron. Mater. 2019, 5, 1800918. [Google Scholar] [CrossRef]
- Park, H.-S.; Ko, S.-J.; Park, J.-S.; Kim, J.Y.; Song, H.-K. Redox-active charge carriers of conducting polymers as a tuner of conductivity and its potential window. Sci. Rep. 2013, 3, 2454. [Google Scholar] [CrossRef] [Green Version]
- Hempel, F.; Law, J.K.Y.; Nguyen, T.C.; Munief, W.; Lu, X.L.; Pachauri, V.; Susloparova, A.; Vu, X.T.; Ingebrandt, S. PEDOT:PSS organic electrochemical transistor arrays for extracellular electrophysiological sensing of cardiac cells. Biosens. Bioelectron. 2017, 93, 132–138. [Google Scholar] [CrossRef]
- Reineke, S.; Thomschke, M.; Lüssem, B.; Leo, K. White organic light-emitting diodes: Status and perspective. Rev. Mod. Phys. 2013, 85, 1245. [Google Scholar] [CrossRef] [Green Version]
- Keene, S.T.; Lubrano, C.; Kazemzadeh, S.; Melianas, A.; Tuchman, Y.; Polino, G.; Scognamiglio, P.; Cinà, L.; Salleo, A.; van de Burgt, Y.; et al. A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 2020, 19, 969–973. [Google Scholar] [CrossRef] [PubMed]
- Schander, A.; Stemmann, H.; Tolstosheeva, E.; Roese, R.; Biefeld, V.; Kempen, L.; Kreiter, A.; Lang, W. Design and fabrication of novel multi-channel floating neural probes for intracortical chronic recording. Sens. Actuators A Phys. 2016, 247, 125–135. [Google Scholar] [CrossRef]
- Bobacka, J. Potential Stability of All-Solid-State Ion-Selective Electrodes Using Conducting Polymers as Ion-to-Electron Transducers. Anal. Chem. 1999, 71, 4932–4937. [Google Scholar] [CrossRef] [PubMed]
- Isaksson, J.; Kjäll, P.; Nilsson, D.; Robinson, N.; Berggren, M.; Richter-Dahlfors, A. Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. Nat. Mater. 2007, 6, 673. [Google Scholar] [CrossRef] [PubMed]
- Berggren, M.; Malliaras, G.G. How conducting polymer electrodes operate. Science 2019, 364, 233–234. [Google Scholar] [CrossRef]
- Paulsen, B.D.; Tybrandt, K.; Stavrinidou, E.; Rivnay, J. Organic mixed ionic–electronic conductors. Nat. Mater. 2019, 19, 13–26. [Google Scholar] [CrossRef]
- Heine, V.; Kremers, T.; Menzel, N.; Schnakenberg, U.; Elling, L. Electrochemical Impedance Spectroscopy Biosensor Enabling Kinetic Monitoring of Fucosyltransferase Activity. ACS Sens. 2021, 6, 1003–1011. [Google Scholar] [CrossRef]
- Kremers, T.; Tintelott, M.; Pachauri, V.; Vu, X.T.; Ingebrandt, S.; Schnakenberg, U. Microelectrode Combinations of Gold and Polypyrrole Enable Highly Stable Two-electrode Electrochemical Impedance Spectroscopy Measurements under Turbulent Flow Conditions. Electroanalysis 2021, 33, 197–207. [Google Scholar] [CrossRef]
- Duarte-Guevara, C.; Swaminathan, V.V.; Burgess, M.; Reddy, B.; Salm, E.; Liu, Y.S.; Rodriguez-Lopez, J.; Bashir, R. On-chip metal/polypyrrole quasi-reference electrodes for robust ISFET operation. Analyst 2015, 140, 3630–3641. [Google Scholar] [CrossRef]
- Han, S.; Polyravas, A.G.; Wustoni, S.; Inal, S.; Malliaras, G.G. Integration of organic electrochemical transistors with implantable probes. Adv. Mater. Technol. 2021, 6, 2100763. [Google Scholar] [CrossRef]
- Hempel, F.W. Organic electrochemical transistors based on PEDOT: PSS for the sensing of cellular signals from confluent cell layers down to single cells. Mater. Sci. 2019, 180, 113101. [Google Scholar]
- Leenaerts, O.; Partoens, B.; Peeters, F. Graphene: A perfect nanoballoon. Appl. Phys. Lett. 2008, 93, 193107. [Google Scholar] [CrossRef] [Green Version]
- Bong, J.H.; Yoon, S.J.; Yoon, A.; Hwang, W.S.; Cho, B.J. Ultrathin graphene and graphene oxide layers as a diffusion barrier for advanced Cu metallization. Appl. Phys. Lett. 2015, 106, 063112. [Google Scholar] [CrossRef] [Green Version]
- Yoo, B.M.; Shin, H.J.; Yoon, H.W.; Park, H.B. Graphene and graphene oxide and their uses in barrier polymers. J. Appl. Polym. Sci. 2014, 131, 39628. [Google Scholar] [CrossRef]
- Sung, S.J.; Park, J.; Cho, Y.S.; Gihm, S.H.; Yang, S.J.; Park, C.R. Enhanced gas barrier property of stacking-controlled reduced graphene oxide films for encapsulation of polymer solar cells. Carbon 2019, 150, 275–283. [Google Scholar] [CrossRef]
- Ren, W.; Cheng, H.-M. The global growth of graphene. Nat. Nanotechnol. 2014, 9, 726–730. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Granstrom, J.; Nie, W.; Sojoudi, H.; Fujita, T.; Voiry, D.; Chen, M.; Gupta, G.; Mohite, A.D.; Graham, S. Reduced graphene oxide thin films as ultrabarriers for organic electronics. Adv. Energy Mater. 2014, 4, 1300986. [Google Scholar] [CrossRef] [Green Version]
- Lu, X. Reduced Graphene Oxide Biosensors for Prostate Cancer Biomarker Detection. Ph.D. Thesis, Justus-Liebig-Universität Gießen, Gießen, Germany, 2018. [Google Scholar]
- Vu, X.; GhoshMoulick, R.; Eschermann, J.; Stockmann, R.; Offenhäusser, A.; Ingebrandt, S. Fabrication and application of silicon nanowire transistor arrays for biomolecular detection. Sens. Actuators B Chem. 2010, 144, 354–360. [Google Scholar] [CrossRef]
- Schnakenberg, U.; Benecke, W.; Lange, P. TMAHW etchants for silicon micromachining. In Proceedings of the TRANSDUCERS’91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers, San Francisco, CA, USA, 24–27 June 1991; pp. 815–818. [Google Scholar]
- Klos, J.; Sun, B.; Beyer, J.; Kindel, S.; Hellmich, L.; Knoch, J.; Schreiber, L. Spin Qubits Confined to a Silicon Nano-Ridge. Appl. Sci. 2019, 9, 3823. [Google Scholar] [CrossRef] [Green Version]
- Tintelott, M.; Ingebrandt, S.; Pachauri, V.; Vu, X.T. Lab-on-a-chip based silicon nanowire sensor system for the precise study of chemical reaction-diffusion networks. In Proceedings of the MikroSystemTechnik Congress 2021, Ludwigsburg, Germany, 8–10 November 2021; pp. 1–4. [Google Scholar]
- Lazar, J.; Schnelting, C.; Slavcheva, E.; Schnakenberg, U. Hampering of the stability of gold electrodes by ferri-/ferrocyanide redox couple electrolytes during electrochemical impedance spectroscopy. Anal. Chem. 2016, 88, 682–687. [Google Scholar] [CrossRef]
- Cui, Y.; Wei, Q.; Park, H.; Lieber, C.M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Nef, C.; Knopfmacher, O.; Tarasov, A.; Weiss, M.; Calame, M.; Schönenberger, C. Graphene transistors are insensitive to pH changes in solution. Nano Lett. 2011, 11, 3597–3600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vu, X.T.; Eschermann, J.F.; Stockmann, R.; GhoshMoulick, R.; Offenhäusser, A.; Ingebrandt, S. Top-down processed silicon nanowire transistor arrays for biosensing. Phys. Status Solidi A 2009, 206, 426–434. [Google Scholar] [CrossRef]
- Papamatthaiou, S.; Zupancic, U.; Kalha, C.; Regoutz, A.; Estrela, P.; Moschou, D. Ultra stable, inkjet-printed pseudo reference electrodes for lab-on-chip integrated electrochemical biosensors. Sci. Rep. 2020, 10, 17152. [Google Scholar] [CrossRef]
- Abbas, Y.; Olthuis, W.; van den Berg, A. Activated carbon as a pseudo-reference electrode for electrochemical measurement inside concrete. Constr. Build. Mater. 2015, 100, 194–200. [Google Scholar] [CrossRef]
- Ying, K.S.; Heng, L.Y.; Hassan, N.I.; Hasbullah, S.A. A New and All-Solid-State Potentiometric Aluminium Ion Sensor for Water Analysis. Sensors 2020, 20, 6898. [Google Scholar] [CrossRef]
- Tymecki, Ł.; Zwierkowska, E.; Koncki, R. Screen-printed reference electrodes for potentiometric measurements. Anal. Chim. Acta 2004, 526, 3–11. [Google Scholar] [CrossRef]
Electrode Name | Electrode Composition |
---|---|
pRE 1 | Au electrode coated with GO |
pRE 2 | Au electrode coated with PEDOT:PSS (termination charge of 100 µC) |
pRE 3 | Au electrode coated with PEDOT:PSS (termination charge of 10 µC), additional GO coating |
pRE 4 | Au electrode coated with PEDOT:PSS (termination charge of 700 µC), additional GO coating |
Electrode Name | 1 min | 10 min | 1 h | 5 h | 10 h |
---|---|---|---|---|---|
pRE 1 | 8.4% | 6% | −0.9% | 29% | 39% |
pRE 2 | −0.4% | −2.8% | −12.6% | −30% | −48% |
pRE 3 | −15% | −21% | 8.2% | 2% | 4% |
pRE 4 | −0.9% | −0.9% | −2.86% | −6.9% | 2.7% |
pRE Concept | OPC Drift | Vth Change of pRE Gated ISFETs | Possibility of On-Chip Integration | Refs. |
---|---|---|---|---|
Ag/AgCl reference elelctrode | 0.6 mV/h | 54.9 mV/pH (hafnium oxide) | yes | [30] |
Pt | 23.2 mV/h | 5.4 mV/pH (hafnium oxide) | yes | [30] |
Pt + PPy | 0.75 mV/h | 44.2 mV/pH (hafnium oxide) | yes | [30] |
Au + PPy | 2.17 mV/h | - | yes | [30] |
Palladium + PPy | 0.92 mV/h | - | yes | [30] |
Inkjet-printed pRE | 4.16 mV/h | - | yes | [48] |
Activated Carbon | 0.8 mV/day | - | no | [49] |
Ag/AgCl screen-printed | 0.2 mV/h | - | yes | [50] |
Ag/AgCl | 0.2 mV/h | - | yes | [51] |
PEDOT:PSS/GO | 0.65 mV/h | 39.7 mV/pH (silicon oxide) | yes | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tintelott, M.; Kremers, T.; Ingebrandt, S.; Pachauri, V.; Vu, X.T. Realization of a PEDOT:PSS/Graphene Oxide On-Chip Pseudo-Reference Electrode for Integrated ISFETs. Sensors 2022, 22, 2999. https://doi.org/10.3390/s22082999
Tintelott M, Kremers T, Ingebrandt S, Pachauri V, Vu XT. Realization of a PEDOT:PSS/Graphene Oxide On-Chip Pseudo-Reference Electrode for Integrated ISFETs. Sensors. 2022; 22(8):2999. https://doi.org/10.3390/s22082999
Chicago/Turabian StyleTintelott, Marcel, Tom Kremers, Sven Ingebrandt, Vivek Pachauri, and Xuan Thang Vu. 2022. "Realization of a PEDOT:PSS/Graphene Oxide On-Chip Pseudo-Reference Electrode for Integrated ISFETs" Sensors 22, no. 8: 2999. https://doi.org/10.3390/s22082999
APA StyleTintelott, M., Kremers, T., Ingebrandt, S., Pachauri, V., & Vu, X. T. (2022). Realization of a PEDOT:PSS/Graphene Oxide On-Chip Pseudo-Reference Electrode for Integrated ISFETs. Sensors, 22(8), 2999. https://doi.org/10.3390/s22082999