Comparison of Electrodermal Activity from Multiple Body Locations Based on Standard EDA Indices’ Quality and Robustness against Motion Artifact
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Processing
2.3. Statistical Analysis
2.4. EDA Data Quality Assessment
3. Results
3.1. Correlation with the Finger EDA
3.2. Separation of Cognitive Stress from the Baseline
3.3. Effect of Motion Artifacts
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamišalić, A.; Fister, I.; Turkanović, M.; Karakatič, S. Sensors and Functionalities of Non-Invasive Wrist-Wearable Devices: A Review. Sensors 2018, 18, 1714. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Campbell, A.S.; de Ávila, B.E.-F.; Wang, J. Wearable Biosensors for Healthcare Monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef]
- Bradley, M.M.; Lang, P.J. Emotion and Motivation. In Handbook of Psychophysiology, 3rd ed.; Cambridge University Press: New York, NY, USA, 2007; pp. 581–607. ISBN 978-0-521-84471-0. [Google Scholar]
- Di Lascio, E.; Gashi, S.; Santini, S. Laughter Recognition Using Non-Invasive Wearable Devices. In Proceedings of the 13th EAI International Conference on Pervasive Computing Technologies for Healthcare, New York, NY, USA, 20 May 2019; pp. 262–271. [Google Scholar]
- Di Lascio, E.; Gashi, S.; Santini, S. Unobtrusive Assessment of Students’ Emotional Engagement during Lectures Using Electrodermal Activity Sensors. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 103. [Google Scholar] [CrossRef]
- Amin, R.; Faghih, R.T. Identification of Sympathetic Nervous System Activation from Skin Conductance: A Sparse Decomposition Approach with Physiological Priors. IEEE Trans. Biomed. Eng. 2021, 68, 1726–1736. [Google Scholar] [CrossRef]
- Benedek, M.; Kaernbach, C. A Continuous Measure of Phasic Electrodermal Activity. J. Neurosci. Methods 2010, 190, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Reinhardt, T.; Schmahl, C.; Wüst, S.; Bohus, M. Salivary Cortisol, Heart Rate, Electrodermal Activity and Subjective Stress Responses to the Mannheim Multicomponent Stress Test (MMST). Psychiatry Res. 2012, 198, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, J.; Morris, R.R.; Picard, R.W. Call Center Stress Recognition with Person-Specific Models. In Proceedings of the Affective Computing and Intelligent Interaction; D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 125–134. [Google Scholar]
- Kalimeri, K.; Saitis, C. Exploring Multimodal Biosignal Features for Stress Detection during Indoor Mobility. In Proceedings of the 18th ACM International Conference on Multimodal Interaction; Association for Computing Machinery: New York, NY, USA, 2016; pp. 53–60. [Google Scholar]
- Posada-Quintero, H.F.; Kong, Y.; Nguyen, K.; Tran, C.; Beardslee, L.; Chen, L.; Guo, T.; Cong, X.; Feng, B.; Chon, K.H. Using Electrodermal Activity to Validate Multilevel Pain Stimulation in Healthy Volunteers Evoked by Thermal Grills. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2020, 319, R366–R375. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Posada-Quintero, H.F.; Chon, K.H. Real-Time High-Level Acute Pain Detection Using a Smartphone and a Wrist-Worn Electrodermal Activity Sensor. Sensors 2021, 21, 3956. [Google Scholar] [CrossRef] [PubMed]
- Posada-Quintero, H.F.; Kong, Y.; Chon, K.H. Objective Pain Stimulation Intensity and Pain Sensation Assessment Using Machine Learning Classification and Regression Based on Electrodermal Activity. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2021, 321, R186–R196. [Google Scholar] [CrossRef]
- Meuret, A.E.; Rosenfield, D.; Wilhelm, F.H.; Zhou, E.; Conrad, A.; Ritz, T.; Roth, W.T. Do Unexpected Panic Attacks Occur Spontaneously? Biol. Psychiatry 2011, 70, 985–991. [Google Scholar] [CrossRef] [Green Version]
- Prince, E.B.; Kim, E.S.; Wall, C.A.; Gisin, E.; Goodwin, M.S.; Simmons, E.S.; Chawarska, K.; Shic, F. The Relationship between Autism Symptoms and Arousal Level in Toddlers with Autism Spectrum Disorder, as Measured by Electrodermal Activity. Autism 2017, 21, 504–508. [Google Scholar] [CrossRef] [Green Version]
- Bechara, A.; Damasio, H.; Damasio, A.R.; Lee, G.P. Different Contributions of the Human Amygdala and Ventromedial Prefrontal Cortex to Decision-Making. J. Neurosci. 1999, 19, 5473–5481. [Google Scholar] [CrossRef] [Green Version]
- Boucsein, W. Electrodermal Activity, 2nd ed.; Springer: Boston, MA, USA, 2012; ISBN 978-1-4614-1125-3. [Google Scholar] [CrossRef]
- Publication Recommendations for Electrodermal Measurements. Psychophysiology 2012, 49, 1017–1034. [CrossRef]
- Payne, A.F.H.; Dawson, M.E.; Schell, A.M.; Singh, K.; Courtney, C.G. Can You Give Me a Hand? A Comparison of Hands and Feet as Optimal Anatomical Sites for Skin Conductance Recording. Psychophysiology 2013, 50, 1065–1069. [Google Scholar] [CrossRef]
- Posada-Quintero, H.F.; Derrick, B.J.; Winstead-Derlega, C.; Gonzalez, S.I.; Ellis, M.C.; Freiberger, J.J.; Chon, K.H. Time-Varying Spectral Index of Electrodermal Activity to Predict Central Nervous System Oxygen Toxicity Symptoms in Divers: Preliminary Results. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021. [Google Scholar]
- Sano, A.; Picard, R.W.; Stickgold, R. Quantitative Analysis of Wrist Electrodermal Activity during Sleep. Int. J. Psychophysiol. 2014, 94, 382–389. [Google Scholar] [CrossRef]
- van Dooren, M.; de Vries, J.J.G.; Janssen, J.H. Emotional Sweating across the Body: Comparing 16 Different Skin Conductance Measurement Locations. Physiol. Behav. 2012, 106, 298–304. [Google Scholar] [CrossRef]
- Randall, W.C. Quantitation and Regional Distribution of Sweat Glands in Man. J. Clin. Investig. 1946, 25, 761–767. [Google Scholar] [CrossRef]
- Saga, K. Structure and Function of Human Sweat Glands Studied with Histochemistry and Cytochemistry. Prog. Histochem. Cytochem. 2002, 37, 323–386. [Google Scholar] [CrossRef]
- Frewin, D.B.; Downey, J.A. Sweating-Physiology and Pathophysiology. Australas. J. Dermatol. 1976, 17, 82–86. [Google Scholar] [CrossRef]
- Harker, M. Psychological Sweating: A Systematic Review Focused on Aetiology and Cutaneous Response. Ski. Pharmacol. Physiol. 2013, 26, 92–100. [Google Scholar] [CrossRef]
- Fletcher, R.R.; Dobson, K.; Goodwin, M.S.; Eydgahi, H.; Wilder-Smith, O.; Fernholz, D.; Kuboyama, Y.; Hedman, E.B.; Poh, M.-Z.; Picard, R.W. ICalm: Wearable Sensor and Network Architecture for Wirelessly Communicating and Logging Autonomic Activity. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 215–223. [Google Scholar] [CrossRef]
- Poh, M.-Z.; Swenson, N.C.; Picard, R.W. A Wearable Sensor for Unobtrusive, Long-Term Assessment of Electrodermal Activity. IEEE Trans. Biomed. Eng. 2010, 57, 1243–1252. [Google Scholar] [CrossRef] [Green Version]
- Payne, A.F.H.; Schell, A.M.; Dawson, M.E. Lapses in Skin Conductance Responding across Anatomical Sites: Comparison of Fingers, Feet, Forehead, and Wrist. Psychophysiology 2016, 53, 1084–1092. [Google Scholar] [CrossRef]
- Ranogajec, S.; Geršak, G. Measuring Site Dependency When Measuring Skin Conductance. In Proceedings of the Twenty-third International Electrotechnical and Computer Science Conference, Montreal, QC, Canada, 3–5 August 2014; pp. 155–158. [Google Scholar]
- Kasos, K.; Kekecs, Z.; Kasos, E.; Szekely, A.; Varga, K. Bilateral Electrodermal Activity in the Active-Alert Hypnotic Induction. Int. J. Clin. Exp. Hypn. 2018, 66, 282–297. [Google Scholar] [CrossRef]
- Kasos, K.; Kekecs, Z.; Csirmaz, L.; Zimonyi, S.; Vikor, F.; Kasos, E.; Veres, A.; Kotyuk, E.; Szekely, A. Bilateral Comparison of Traditional and Alternate Electrodermal Measurement Sites. Psychophysiology 2020, 57, e13645. [Google Scholar] [CrossRef]
- Hedman, E.; Miller, L.; Schoen, S.; Nielsen, D.; Goodwin, M.; Picard, R. Measuring Autonomic Arousal during Therapy. In Proceedings of the 8th International Design and Emotion Conference London 2012 Central Saint Martins College of Art & Design, London, UK, 11–14 September 2012. [Google Scholar]
- Fedor, S.; Picard, R.W. Ambulatory EDA: Comparisons of Bilateral Forearm and Calf Locations. 2014. Available online: https://www.media.mit.edu/publications/ambulatory-eda-comparison-of-bilateral-forearm-and-calf-locations (accessed on 10 February 2022).
- Brown, D.E.; Sievert, L.L.; Morrison, L.A.; Reza, A.M.; Mills, P.S. Do Japanese American Women Really Have Fewer Hot Flashes than European Americans? The Hilo Women’s Health Study. Menopause 2009, 16, 870–876. [Google Scholar] [CrossRef] [Green Version]
- Consensys 200 g IMU Development Kit. Shimmer Wearable Sensor Technology. Available online: https://shimmersensing.com/product/consensys-200g-imu-development-kit/ (accessed on 10 February 2022).
- Kong, Y.; Posada-Quintero, H.F.; Chon, K.H. Pain Detection Using a Smartphone in Real Time. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 4526–4529. [Google Scholar]
- Scarpina, F.; Tagini, S. The Stroop Color and Word Test. Front. Psychol. 2017, 8, 557. [Google Scholar] [CrossRef] [Green Version]
- Posada-Quintero, H.F.; Florian, J.P.; Orjuela-Cañón, Á.D.; Chon, K.H. Highly Sensitive Index of Sympathetic Activity Based on Time-Frequency Spectral Analysis of Electrodermal Activity. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2016, 311, R582–R591. [Google Scholar] [CrossRef] [Green Version]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart Rate Variability. Standards of Measurement, Physiological Interpretation, and Clinical Use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef] [Green Version]
- Posada-Quintero, H.F.; Florian, J.P.; Orjuela-Cañón, A.D.; Aljama-Corrales, T.; Charleston-Villalobos, S.; Chon, K.H. Power Spectral Density Analysis of Electrodermal Activity for Sympathetic Function Assessment. Ann. Biomed. Eng. 2016, 44, 3124–3135. [Google Scholar] [CrossRef]
- Greco, A.; Valenza, G.; Lanata, A.; Scilingo, E.P.; Citi, L. CvxEDA: A Convex Optimization Approach to Electrodermal Activity Processing. IEEE Trans. Biomed. Eng. 2016, 63, 797–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posada-Quintero, H.F.; Chon, K.H. Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic Review. Sensors 2020, 20, 479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbons, J.D.; Chakraborti, S. Nonparametric Statistical Inference. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 977–979. ISBN 978-3-642-04898-2. [Google Scholar]
- Hossain, M.-B.; Posada-Quintero, H.F.; Kong, Y.; McNaboe, R.; Chon, K.H. Automatic Motion Artifact Detection in Electrodermal Activity Data Using Machine Learning. Biomed. Signal Process. Control 2022, 74, 103483. [Google Scholar] [CrossRef]
- Hossain, M.-B.; Posada-Quintero, H.F.; Kong, Y.; McNaboe, R.; Chon, K.H. A Preliminary Study on Automatic Motion Artifact Detection in Electrodermal Activity Data Using Machine Learning. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021; pp. 6920–6923. [Google Scholar]
- Miller, L.H. Table of Percentage Points of Kolmogorov Statistics. J. Am. Stat. Assoc. 1956, 51, 111–121. [Google Scholar] [CrossRef]
- Posada-Quintero, H.F.; Landon, C.S.; Stavitzski, N.M.; Dean, J.B.; Chon, K.H. Seizures Caused by Exposure to Hyperbaric Oxygen in Rats Can Be Predicted by Early Changes in Electrodermal Activity. Front. Physiol. 2022, 12, 767386. [Google Scholar] [CrossRef]
- Hossain, M.-B.; Posada-Quintero, H.; Chon, K.H. A Deep Convolutional Autoencoder for Motion Artifact Removal in Electrodermal Activity Signals: A Preliminary Study. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Glasgow, UK, 11–15 July 2022. [Google Scholar]
Duration (s) | Activity Description |
---|---|
120 | Relax, supine, with eyes closed |
120 | Perform Stroop test |
120 | Walk at 3 mph |
120 | Dumbbell deadlift, one handed; release between each repetition |
Location | Raw Data | Phasic | Tonic | |||
---|---|---|---|---|---|---|
Mean Pearson r | SD Pearson r | Mean Pearson r | SD Pearson r | Mean Pearson r | SD Pearson r | |
Forehead | 0.3194 | 0.4510 | 0.2833 | 0.2650 | 0.3077 | 0.4643 |
Neck | 0.4405 | 0.4601 | 0.2530 | 0.1920 | 0.4532 | 0.4200 |
Feet | 0.8466 | 0.1851 | 0.7895 | 0.1118 | 0.8261 | 0.1704 |
Measurement Site | EDA Index | Resting Mean | SCWT Mean | p-Value |
---|---|---|---|---|
Forehead | No. of SCR | 12.3478 | 12.3478 | 0.4896 |
Phasic mean | 0.2839 | 0.4378 | 0.7634 | |
Phasic variance | 0.3040 | 0.3497 | 0.9761 | |
Tonic mean | 25.7738 | 25.6239 | 0.8692 | |
Tonic variance | 0.9782 | 1.6313 | 0.1559 | |
Neck | No. of SCR | 5.2609 | 4.5652 | 0.5065 |
Phasic mean | 0.0373 | 0.0786 | 0.3799 | |
Phasic variance | 0.0512 | 0.1030 | 0.3182 | |
Tonic mean | 4.1619 | 3.6539 | 0.1851 | |
Tonic variance | 0.5426 | 0.4944 | 0.8788 | |
Finger | No. of SCR | 6.0869 | 11.8696 | 0.0017 ** |
Phasic mean | 0.1353 | 0.2762 | 0.0016 ** | |
Phasic variance | 0.1362 | 0.2047 | 0.0248 * | |
Tonic mean | 6.5960 | 6.6051 | 0.9802 | |
Tonic variance | 1.0982 | 0.8353 | 0.1306 | |
Foot | No. of SCR | 8.3478 | 15.0870 | 0.0006 *** |
Phasic mean | 0.1435 | 0.3562 | 0.0154 * | |
Phasic variance | 0.0434 | 0.1065 | 0.0091 ** | |
Tonic mean | 5.5115 | 6.3622 | 0.0192 * | |
Tonic variance | 0.5430 | 0.6312 | 0.4273 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.-B.; Kong, Y.; Posada-Quintero, H.F.; Chon, K.H. Comparison of Electrodermal Activity from Multiple Body Locations Based on Standard EDA Indices’ Quality and Robustness against Motion Artifact. Sensors 2022, 22, 3177. https://doi.org/10.3390/s22093177
Hossain M-B, Kong Y, Posada-Quintero HF, Chon KH. Comparison of Electrodermal Activity from Multiple Body Locations Based on Standard EDA Indices’ Quality and Robustness against Motion Artifact. Sensors. 2022; 22(9):3177. https://doi.org/10.3390/s22093177
Chicago/Turabian StyleHossain, Md-Billal, Youngsun Kong, Hugo F. Posada-Quintero, and Ki H. Chon. 2022. "Comparison of Electrodermal Activity from Multiple Body Locations Based on Standard EDA Indices’ Quality and Robustness against Motion Artifact" Sensors 22, no. 9: 3177. https://doi.org/10.3390/s22093177
APA StyleHossain, M. -B., Kong, Y., Posada-Quintero, H. F., & Chon, K. H. (2022). Comparison of Electrodermal Activity from Multiple Body Locations Based on Standard EDA Indices’ Quality and Robustness against Motion Artifact. Sensors, 22(9), 3177. https://doi.org/10.3390/s22093177