Comparison of Infrared Thermography and Other Traditional Techniques to Assess Moisture Content of Wall Specimens
Abstract
:1. Introduction
2. Use of Non-Destructive Techniques to Diagnose Pathologies in Buildings
3. Materials and Methods
3.1. Framework
3.2. Materials Characterization
3.3. Equipment Characterization
3.4. Measurement Procedures
- Thermal image of the surface was captured. Only the intact columns were considered in the data analysis of the thermal images.
- In each measurement time, three measurements were carried out with the SMM in all the remaining undisturbed columns; three measurements were carried out with the SMM to obtain the average of the moisture measurement provided by the equipment. Afterwards, measurements with the SMM were launched in software to generate moisture maps.
- The samples for the GM were collected from all the areas included in the column of the corresponding time step, using a hole saw 53 mm in diameter. After removal, the samples were placed in metallic bowls, properly identified, and previously weighed. The samples only included the mortar of the rendering of the wall.
- After collecting the sample and placing it in the bowl, it was weighed and then placed in an oven at a temperature of 105 ± 5 °C. The stabilization of the mass was monitored every 24 h until the difference between subsequent weighing was less than 0.1% of the sample mass.
3.5. Criteria for Data Analysis
3.5.1. Thermal Images
3.5.2. Moisture Content Using GM
4. Results—Qualitative Analysis
5. Results—Quantitative Analyses
5.1. Thermal Gradient versus Moisture Content
5.2. Average SMM Results versus Moisture Content
5.3. Discussion of the Quantitative Results
6. Conclusions
- The ∆T increases in the first rows even before the GM indicates moisture in these areas. Additionally, throughout the humidification and drying phase in the hot chamber, a thermal gradient was identified in regions in which the GM showed no high moisture content;
- The SMM takes longer to indicate high moisture levels than IRT. In the humidification of both walls, the SMM started to indicate moisture only when it was already visible to the naked eye, after the GM had indicated high moisture content. However, in the drying phase, the SMM continued to indicate areas as having high moisture content even after no signs of moisture were visible to the naked eye;
- After approximately 5 days of testing, the ∆T reached maximum values in the first row and remained stable or slightly decreased until the end of the test;
- The SMM values in humidification increase until approximately 10 days of testing, at which point they stabilize, following the MC, which also stabilizes approximately from the 10th day on.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Morón, C.; Ferrández, D.; Saiz, P.; Yedra, E. Measuring system of capillary rising damp in cement mortars. Measurement 2019, 135, 252–259. [Google Scholar] [CrossRef]
- Barreira, E.; Almeida, R.M. Infrared Thermography for Building Moisture Inspection; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Cárdenas-Del-Campo, P.; Soto-Lara, F.; Marín-Granados, M. Description of Moisture Thermal Patterns in Concrete for the Thermal Inspection Method by Infrared Thermography. In Advances on Mechanics, Design Engineering and Manufacturing II. Lecture Notes in Mechanical Engineering, 1st ed.; Cavas-Martínez, F., Eynard, B., Fernández Cañavate, F., Fernández-Pacheco, D., Morer, P., Nigrelli, V., Eds.; Springer: Cham, Switzerland, 2019; pp. 622–631. [Google Scholar] [CrossRef]
- Hubner, C.; Kaatze, U. Electromagnetic Moisture Measurement: Principles and Applications; Universitätsverlag Göttingen: Göttingen, Germany, 2016; 315p, ISBN 978-3-86395-260-0. [Google Scholar]
- Franzoni, E. Rising damp removal from historical masonries: A still open challenge. Constr. Build. Mater. 2014, 54, 123–136. [Google Scholar] [CrossRef]
- Straube, J.F. Moisture in Buildings. Ashrae J. 2002, 44, 15–19. [Google Scholar]
- Avdelidis, N.; Moropoulou, A.; Theoulakis, P. Detection of water deposits and movement in porous materials by infrared imaging. Infrared Phys. Technol. 2003, 44, 183–190. [Google Scholar] [CrossRef]
- Garcia, J.R.R. Potencialidades da Termografia para o Diagnóstico de Patologias em Edifícios. Masters’s Thesis, University of Porto, Porto, Portugal, 2014. [Google Scholar]
- De Brito, J. Humidade Ascendente em Paredes Térreas de Edifícios; Instituto Superior Técnico: Lisbon, Portugal, 2003; 82p. [Google Scholar] [CrossRef]
- Agyekum, K.; Ayarkwa, J.; Koranteng, C. Controlling Rising Damp in New Buildings: Field Trials of Proposed Treatment Methods. In Proceedings of the International Conference on Infrastructure Development in Africa (ICIDA), Johannesburg, South Africa, 10–12 July 2016. [Google Scholar]
- Hattge, A.F. Estudo Comparativo Sobre a Permeabilidade das Alvenarias em Blocos Cerâmicos e Alvenarias em Blocos de Concreto. Master’s Thesis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil, 2004. [Google Scholar]
- Mason, G. Rising damp. Build. Sci. 1974, 9, 227–231. [Google Scholar] [CrossRef]
- Yu, Y.; Rashidi, M.; Samali, B.; Yousefi, A.M.; Wang, W. Multi-Image-Feature-Based Hierarchical Concrete Crack Identification Framework Using Optimized SVM Multi-Classifiers and D–S Fusion Algorithm for Bridge Structures. Remote Sens. 2021, 13, 240. [Google Scholar] [CrossRef]
- Freitas, J.G.; Carasek, H.; Cascudo, O. Utilização de termografia infravermelha para avaliação de fissuras em fachadas com revestimento de argamassa e pintura. Ambiente Construído 2014, 14, 57–73. [Google Scholar] [CrossRef]
- Bauer, E.; Pavon, E.; Oliveira, E. Inspeção Termográfica de Fachadas: Investigação da Influência da Fissuração. In Proceedings of the Brazilian Congress of Construction Pathology, Belém, Brazil, 18–20 April 2016. [Google Scholar]
- Bauer, E.; Pavón, E.; Barreira, E.; De Castro, E.K. Analysis of building facade defects using infrared thermography: Laboratory studies. J. Build. Eng. 2016, 6, 93–104. [Google Scholar] [CrossRef]
- Washer, G.; Bolleni, N.; Fenwick, R. Thermographic Imaging of Subsurface Deterioration in Concrete Bridges. Transp. Res. Rec. J. Transp. Res. Board 2010, 2201, 27–33. [Google Scholar] [CrossRef]
- Milovanović, B.; Pečur, I.B. Review of Active IR Thermography for Detection and Characterization of Defects in Reinforced Concrete. J. Imaging 2016, 2, 11. [Google Scholar] [CrossRef]
- Washer, G.; Fenwick, R.; Bolleni, N.; Harper, J. Effects of Environmental Variables on Infrared Imaging of Subsurface Features of Concrete Bridges. Transp. Res. Rec. J. Transp. Res. Board 2009, 2108, 107–114. [Google Scholar] [CrossRef]
- Gucunski, N.; Imani, A.; Romero, F.; Nazarian, S.; Yuan, D.; Wiggenhauser, H.; Shokouhi, P.; Taffe, A.; Kutrubes, D. Nondestructive Testing to Identify Concrete Bridge Deck Deterioration, 1st ed.; Transportation Research Board: Washington, DC, USA, 2013; 95p. [Google Scholar] [CrossRef]
- Lerma, C.; Barreira, E.; Almeida, R.M.S.F. A discussion concerning active infrared thermography in the evaluation of buildings air infiltration. Energy Build. 2018, 168, 56–66. [Google Scholar] [CrossRef]
- Bauer, E.; Pavon, E. Termografia de infravermelho na identificação e avaliação de manifestações patológicas em edifícios. Rev. Concreto Construções 2015, 79, 93–98. [Google Scholar]
- Bauer, E.; Castro, E.; Pavón, E.; Hildenberg, A. Criteria for application and identification of anomalies on the facades of buildings with the use of passive infrared thermography. In Proceedings of the 1st International Symposium on Building Pathology, Porto, Portugal, 24–27 March 2015. [Google Scholar]
- De Freitas, S.S.; de Freitas, V.P.; Barreira, E. Detection of façade plaster detachments using infrared thermography—A nondestructive technique. Constr. Build. Mater. 2014, 70, 80–87. [Google Scholar] [CrossRef]
- Israel, M.C. Ensaios não Destrutivos Aplicados à Avaliação de Revestimentos de Argamassa. Masters’s Thesis, University of São Paulo, São Paulo, Brazil, 2013. [Google Scholar]
- Valero, L.R.; Sasso, V.F.; Vicioso, E.P. In situ assessment of superficial moisture condition in façades of historic building using non-destructive techniques. Case Stud. Constr. Mater. 2019, 10, e00228. [Google Scholar] [CrossRef]
- Barreira, E.; Almeida, R.M.S.F.; Delgado, J.M.P.Q. Infrared thermography for assessing moisture related phenomena in building components. Constr. Build. Mater. 2016, 110, 251–269. [Google Scholar] [CrossRef]
- Barreira, E.S.B.M. Aplicação da Termografia ao Estudo do Comportamento Higrotérmico dos Edifícios. Masters’s Thesis, University of Porto, Porto, Portugal, 2004. [Google Scholar]
- Camino, M.S.; Leon, F.J.; Llorente, A.; Olivar, J.M. Evaluation of the behavior of brick tile masonry and mortar due to capillary rise of moisture. Mater. Construcc. 2014, 64, e020. [Google Scholar] [CrossRef] [Green Version]
- Barreira, E.; Almeida, R.M.; Ferreira, J.P. Assessing the humidification process of lightweight concrete specimens through infrared thermography. Energy Procedia 2017, 132, 213–218. [Google Scholar] [CrossRef]
- Rocha, J.; Santos, C.; Póvoas, Y. Detection of precipitation infiltration in buildings by infrared thermography: A case study. Procedia Struct. Integr. 2018, 11, 99–106. [Google Scholar] [CrossRef]
- Santos, C.F.; Rocha, J.H.A.; Batista, P.I.B.; Tavares, Y.V.P. Potencialidade Da Termografia Infravermelha Na Detecção De Infiltrações Em Edificações. In Proceedings of the 6th Conference on Pathology and Rehabilitation of Buildings, Rio de Janeiro, Brazil, 4–6 April 2018; ISBN 978-85-60270-07-1. [Google Scholar]
- Jing, T.S.; Mydin, A.O.; Utaberta, N. Appraisal of moisture problem of inheritance building envelope assemblies via visible and infrared thermography methods. J. Teknol. 2015, 75, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, M.T.G.; Rosse, V.J.; Laurindo, N.G. Thermography evaluation strategy proposal due moisture damage on building facades. J. Build. Eng. 2021, 43, 102555. [Google Scholar] [CrossRef]
- Grinzato, E.; Ludwig, N.; Cadelano, G.; Bertucci, M.; Gargano, M.; Bison, P. Infrared Thermography for Moisture Detection: A Laboratory Study and In-situ Test. Mater. Eval. 2011, 69, 97–104. [Google Scholar]
- Rosina, E.; Ludwig, N. Optimal thermographic procedures for moisture analysis in building materials. Diagn. Imaging Technol. Ind. Appl. 1999, 3827, 22–33. [Google Scholar] [CrossRef]
- Carlomagno, G.M.; DI Maio, R.; Fedi, M.; Meola, C. Integration of infrared thermography and high-frequency electromagnetic methods in archaeological surveys. J. Geophys. Eng. 2011, 8, S93–S105. [Google Scholar] [CrossRef]
- Luiz, M.G. Medição da Umidade no Sistema Concreto—Madeira. Masters’s Thesis, University of São Paulo, Piracicaba, Brazil, 2005. [Google Scholar]
- Foulks, W.G. Historic Building Facades: The Manual for Maintenance and Rehabilitation; John Wiley & Sons, Inc.: New York, NY, USA, 1997; 224p, ISBN 978-0-471-14415-1. [Google Scholar]
- EN 1015-18; Methods of Test for Mortar for Masonry—Part 18: Determination of WATER Absorption Coefficient due to Capillary Action of Hardened Mortar. CEN—European Committee for Standardization: Brussels, Belgium, 2002.
- Flir Systems. Technical Data FLIR E40; Flir Systems, Inc.: Wilsonville, OR, USA, 2012. [Google Scholar]
- James Instruments Non Destructive Test Equipment. T-M-170 Aquameter Operator’s Manual; James Instruments: Chicago, IL, USA, 2012.
- ASTM E1862; Standard Test Methods for Measuring and Compensating for Reflected Temperature Using Infrared Imaging Radiometers. American Society for Testing and Materials: West Conshohocken, PA, USA, 2010.
- ASTM E1933-14; Standard Test Methods for Measuring and Compensating for Emissivity Using Infrared Imaging Radiometers. American Society for Testing and Materials: West Conshohocken, PA, USA, 2018.
- Registrador Eletrônico de Umidade e Temperatura LogBox-RHT-LCD. Available online: https://www.novus.com.br/site/default.asp?TroncoID=621808&SecaoID=726281&Template=../catalogos/layout_produto.asp&ProdutoID=727271 (accessed on 14 February 2022).
- Hoła, A. Measuring of the Moisture Content in Brick Walls of Historical Buildings—The Overview of Methods. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Riga, Latvia, 27–29 September 2017; IOP Publishing: Bristol, UK, 2017; Volume 251, p. 12067. [Google Scholar]
- Adamowski, J.; Hola, J.; Matkowsk, Z. Probleme und Lösungen beim Feuchtigkeitsschutz des Mauerwerks von Baudenkmälern am Beispiel zweier großer Barockbauten in Wrocław. Bautechnik 2005, 82, 426–433. [Google Scholar] [CrossRef]
Chamber | Phase | Minimum T (°C) | Maximum T (°C) | Average T (°C) | Minimum RH (%) | Maximum RH (%) | Average RH (%) |
---|---|---|---|---|---|---|---|
Hot | Humidification | 28.1 | 36.0 | 30.3 | 40 | 66 | 61 |
Drying | 28.2 | 35.5 | 30.0 | 46 | 67 | 61 | |
Cold | Humidification | 12.8 | 15.8 | 14.9 | 74 | 92 | 88 |
Drying | 13.4 | 16.3 | 15.2 | 77 | 92 | 90 |
Fresh bulk density | 1600 to 2000 kg/m3 |
Tensile strength in bending | 1.5 to 2.7 MPa |
Compressive strength | 4.0 to 6.5 MPa |
Water retention | 80 to 90% |
Incorporated air content | 15 to 18% |
Water absorption coefficient | 0.50 kg/(m2·min0.5) |
Thermal sensitivity | <0.07 °C to 30 °C (86 °F)/70 mK |
Detector type | Focal plane array (FPA), uncooled microbolometer |
Spectral range | 7.5 a 13 µm |
IR Resolution | 160 × 120 pixels |
Minimum focus distance | 0.40 m |
Field of view (FOV) | 25° × 19° |
Spatial resolution (IFOV) | 2.72 mrad |
Measurement range | 0–80% |
Measurement depth | Search/Density mode—20 mm Pin mode—10 mm |
Operating conditions | Temperature: 0–50 °C Humidity: below 90% RH |
Alarm limits (AL) | AL < 13%—decay impossible 13% ≤ AL ≤ 18%—decay possible AL > 18%—decay inevitable |
Hot Climate Chamber | Cold Climate Chamber | |||
---|---|---|---|---|
Time | Humidification | Drying | Humidification | Drying |
t0 | 0 h | 0 h | 0 h | 0 h |
t1 | 2 h | 1.5 h | 1 h | 2 h |
t2 | 4 h | 3 h | 3 h | 4 h |
t3 | 7 h | 8 h | 8 h | 8 h |
t4 | 23 h | 23 h | 23 h | 23 h |
t5 | 32 h | 32 h | 33 h | 32 h |
t6 | 47 h | 47 h | 47 h | 47 h |
t7 | 56 h | 56 h | 119 h | 167 h |
t8 | 119 h | 95 h | 167 h | 191 h |
t9 | 167 h | 167 h | 215 h | 263 h |
t10 | 215 h | 191 h | 287 h | 359 h |
t11 | 263 h | 263 h | 335 h | 407 h |
t12 | 359 h | - | 387 h | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dafico, L.C.M.; Barreira, E.; Almeida, R.M.S.F.; Carasek, H. Comparison of Infrared Thermography and Other Traditional Techniques to Assess Moisture Content of Wall Specimens. Sensors 2022, 22, 3182. https://doi.org/10.3390/s22093182
Dafico LCM, Barreira E, Almeida RMSF, Carasek H. Comparison of Infrared Thermography and Other Traditional Techniques to Assess Moisture Content of Wall Specimens. Sensors. 2022; 22(9):3182. https://doi.org/10.3390/s22093182
Chicago/Turabian StyleDafico, Letícia C. M., Eva Barreira, Ricardo M. S. F. Almeida, and Helena Carasek. 2022. "Comparison of Infrared Thermography and Other Traditional Techniques to Assess Moisture Content of Wall Specimens" Sensors 22, no. 9: 3182. https://doi.org/10.3390/s22093182
APA StyleDafico, L. C. M., Barreira, E., Almeida, R. M. S. F., & Carasek, H. (2022). Comparison of Infrared Thermography and Other Traditional Techniques to Assess Moisture Content of Wall Specimens. Sensors, 22(9), 3182. https://doi.org/10.3390/s22093182