2D-Hexagonal Boron Nitride Screen-Printed Bulk-Modified Electrochemical Platforms Explored towards Oxygen Reduction Reactions
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Production of 2D-hBN/SPEs
2.3. Electrochemical Measurements
2.4. Physicochemical Characterization Equipment
3. Results and Discussion
3.1. Physicochemical Characterisation of 2D-hBN
3.2. Electrochemical Performance of the 2D-hBN/SPEs towards the ORR
3.3. Evaluation of the ORR Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cao, P.; Zhao, K.; Quan, X.; Chen, S.; Yu, H. Efficient and stable heterogeneous electro-Fenton system using iron oxides embedded in Cu, N co-doped hollow porous carbon as functional electrocatalyst. Sep. Purif. Technol. 2020, 238, 116424. [Google Scholar] [CrossRef]
- Zagal, J.H.; Koper, M.T.M. Reactivity Descriptors for the Activity of Molecular MN4 Catalysts for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2016, 55, 14510–14521. [Google Scholar] [CrossRef] [PubMed]
- Rowley-Neale, S.J.; Brownson, D.A.C.; Fearn, J.M.; Smith, G.C.; Ji, X.; Banks, C.E. 2D Molybdenum Disulphide (2D-MoS2) Modified Electrodes Explored Towards the Oxygen Reduction Reaction. Nanoscale 2016, 8, 14767–14777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uosaki, K.; Elumalai, G.; Noguchi, H.; Masuda, T.; Lyalin, A.; Nakayama, A.; Taketsugu, T.J. Boron nitride nanosheet on gold as an electrocatalyst for oxygen reduction reaction: Theoretical suggestion and experimental proof. Am. Chem. Soc. 2014, 136, 6542–6545. [Google Scholar] [CrossRef]
- Randviir, E.P.; Banks, C.E. The Oxygen Reduction Reaction at Graphene Modified Electrodes. Electroanalysis 2014, 26, 76–83. [Google Scholar] [CrossRef]
- Geng, D.; Chen, Y.; Chen, Y.; Li, Y.; Li, R.; Sun, X.; Ye, S.; Knights, S. High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ Sci. 2011, 4, 760–764. [Google Scholar]
- Morozan, A.; Jousselme, B.; Palacin, S. Low-platinum and platinum-free catalysts for the oxygenreduction reaction at fuelcell cathodes. Energy Environ Sci. 2011, 4, 1238–1254. [Google Scholar]
- Kramm, U. Fuel Cells, Non-Precious Metal Catalysts for Oxygen Reduction Reaction. In Encyclopedia of Applied Electrochemistry; Kreysa, G., Ota, K.-i., Savinell, R., Eds.; Springer: New York, NY, USA, 2014; pp. 909–918. [Google Scholar] [CrossRef]
- Song, C.; Zhang, J. Electrocatalytic Oxygen Reduction Reaction. In PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications; Zhang, J., Ed.; Springer: London, UK, 2008; pp. 89–134. [Google Scholar] [CrossRef]
- Mamtani, K.; Jain, D.; Dogu, D.; Gustin, V.; Gunduz, S.; Co, A.C.; Ozkan, U.S. Insights into oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) active sites for nitrogen-doped carbon nanostructures (CNx) in acidic media. Appl. Catal. B Environ. 2018, 220, 88–97. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, P.; Zhang, C.; Cui, X.; Xu, Y.; Qu, H.; Shi, J. Towards understanding ORR activity and electron-transfer pathway of M-Nx/C electro-catalyst in acidic media. J. Catal. 2017, 356, 229–236. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Guo, Y.; Xu, D.; Gong, Y.; Tang, X. Supercritical water oxidation of polyvinyl alcohol and desizing wastewater: Influence of NaOH on the organic decomposition. J. Environ. Sci. 2013, 25, 1583–1591. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, J.; Ong, C.N.; Vecitis, C.D.; Zhou, Z. Electrochemical wastewater treatment with carbon nanotube filters coupled with in situ generated H2O2. Environ. Sci. Water Res. Technol. 2015, 1, 769–778. [Google Scholar] [CrossRef]
- Guo, J.; Shi, Y.; Bai, X.; Wang, X.; Ma, T. Atomically thin MoSe2/graphene and WSe2/graphene nanosheets for the highly efficient oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 24397–24404. [Google Scholar] [CrossRef]
- Eng, A.Y.S.; Ambrosi, A.; Sofer, Z.; Šimek, P.; Pumera, M. Electrochemistry of Transition Metal Dichalcogenides: Strong Dependence on the Metal-to-Chalcogen Composition and Exfoliation Method. ACS Nano 2014, 8, 12185–12198. [Google Scholar] [CrossRef]
- García-Miranda Ferrari, A.; Brownson, D.A.C.; Abo Dena, A.S.; Foster, C.W.; Rowley-Neale, S.J.; Banks, C.E. Tailoring the electrochemical properties of 2D-hBN via physical linear defects: Physicochemical, computational and electrochemical characterisation. Nanoscale Adv. 2020, 2, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.F.; Randviir, E.P.; Brownson, D.A.C.; Ji, X.; Smith, G.C.; Banks, C.E. 2D Hexagonal Boron Nitride (2D-hBN) Explored as a Potential Electrocatalyst for the Oxygen Reduction Reaction. Electroanalysis 2017, 29, 622–634. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.F.; Down, M.P.; Smith, G.C.; Foster, C.W.; Banks, C.E. Surfactant-exfoliated 2D hexagonal boron nitride (2D-hBN): Role of surfactant upon the electrochemical reduction of oxygen and capacitance applications. J. Mater. Chem. A 2017, 5, 4103–4113. [Google Scholar] [CrossRef] [Green Version]
- Esrafili, M.D.; Nematollahi, P. Potential of Si-doped boron nitride nanotubes as a highly active and metal-free electrocatalyst for oxygen reduction reaction: A DFT study. Synth. Met. 2017, 226, 129–138. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Z.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T.R.; Liu, Y.; Yan, X.; Nilsson, E.; et al. Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide. J. Am. Chem. Soc. 2018, 140, 7851–7859. [Google Scholar] [CrossRef]
- Rowley-Neale, S.J.; Brownson, D.A.C.; Smith, G.; Banks, C.E. Graphene Oxide Bulk-Modified Screen-Printed Electrodes Provide Beneficial Electroanalytical Sensing Capabilities. Biosensors 2020, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Randviir, E.P.; Brownson, D.A.C.; Metters, J.P.; Kadara, R.O.; Banks, C.E. The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes. Phys. Chem. Chem. Phys. 2014, 16, 4598–4611. [Google Scholar] [CrossRef] [Green Version]
- García-Miranda Ferrari, A.; Brownson, D.A.C.; Banks, C.E. Investigating the Integrity of Graphene towards the Electrochemical Oxygen Evolution Reaction. ChemElectroChem 2019, 6, 5446–5453. [Google Scholar] [CrossRef] [Green Version]
- García-Miranda Ferrari, A.; Brownson, D.A.C.; Banks, C.E. Investigating the Integrity of Graphene towards the Electrochemical Hydrogen Evolution Reaction (HER). Sci. Rep. 2019, 9, 15961. [Google Scholar] [CrossRef]
- Rastogi, P.K.; Sahoo, K.R.; Thakur, P.; Sharma, R.; Bawari, S.; Podila, R.; Narayanan, T.N. Graphene–hBN non-van der Waals vertical heterostructures for four- electron oxygen reduction reaction. Phys. Chem. Chem. Phys. 2019, 21, 3942–3953. [Google Scholar] [CrossRef]
- Elumalai, G.; Noguchi, H.; Dinh, H.C.; Uosaki, K. An efficient electrocatalyst for oxygen reduction to water-boron nitride nanosheets decorated with small gold nanoparticles (~5 nm) of narrow size distribution on gold substrate. J. Electroanal. Chem. 2018, 819, 107–113. [Google Scholar] [CrossRef]
- Wang, J.; Hao, J.; Liu, D.; Qin, S.; Portehault, D.; Li, Y.; Chen, Y.; Lei, W. Porous Boron Carbon Nitride Nanosheets as Efficient Metal-Free Catalysts for the Oxygen Reduction Reaction in Both Alkaline and Acidic Solutions. ACS Energy Lett. 2017, 2, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Tabassum, H.; Zou, R.; Mahmood, A.; Liang, Z.; Guo, S. A catalyst-free synthesis of B, N co-doped graphene nanostructures with tunable dimensions as highly efficient metal free dual electrocatalysts. J. Mater. Chem. A 2016, 4, 16469–16475. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S.Z. Two-Step Boron and Nitrogen Doping in Graphene for Enhanced Synergistic Catalysis. Angew. Chem. Int. Ed. 2013, 52, 3110–3116. [Google Scholar] [CrossRef] [PubMed]
- Choudry, N.A.; Kampouris, D.K.; Kadara, R.O.; Banks, C.E. Disposable highly ordered pyrolytic graphite-like electrodes: Tailoring the electrochemical reactivity of screen printed electrodes. Electrochem. Commun. 2010, 12, 6–9. [Google Scholar] [CrossRef]
- Khairy, M.; Kampouris, D.K.; Kadara, R.O.; Banks, C.E. Gold Nanoparticle Modified Screen Printed Electrodes for the Trace Sensing of Arsenic(III) in the Presence of Copper(II). Electroanalysis 2010, 22, 2496–2501. [Google Scholar] [CrossRef]
- Rowley-Neale, S.J.; Foster, C.W.; Smith, G.C.; Brownson, D.A.C.; Banks, C.E. Mass-producible 2D-MoSe2 bulk modified screen-printed electrodes provide significant electrocatalytic performances towards the hydrogen evolution reaction. Sustain. Energy Fuels 2017, 1, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.T.; Bray, K.; Ford, M.J.; Toth, M.; Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nano 2016, 11, 37–41. [Google Scholar] [CrossRef]
- Gorbachev, R.V.; Riaz, I.; Nair, R.R.; Jalil, R.; Britnell, L.; Belle, B.D.; Hill, E.W.; Novoselov, K.S.; Watanabe, K.; Taniguchi, T.; et al. Hunting for Monolayer Boron Nitride: Optical and Raman Signatures. Small 2011, 7, 465–468. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Wei, T.-S.; Ahn, B.; Seo, J.; Dillon, S.; Lewis, J. 3D Printing of Interdigitated Li-Ion Microbattery Architectures. Mater. View 2013, 28, 4539–4543. [Google Scholar] [CrossRef] [Green Version]
- Bhimanapati, G.R.; Kozuch, D.; Robinson, J.A. Large-scale synthesis and functionalization of hexagonal boron nitride nanosheets. Nanoscale 2014, 6, 11671–11675. [Google Scholar] [CrossRef]
- Yuan, S.; Toury, B.; Benayoun, S.; Chiriac, R.; Gombault, F.; Journet, C.; Brioude, A. Low-Temperature Synthesis of Highly Crystallized Hexagonal Boron Nitride Sheets with Li3N as Additive Agent. Eur. J. Inorg. Chem. 2014, 2014, 5507–5513. [Google Scholar] [CrossRef]
- Kurapati, R.; Backes, C.; Ménard-Moyon, C.; Coleman, J.N.; Bianco, A. White Graphene undergoes Peroxidase Degradation. Angew. Chem. Int. Ed. 2016, 55, 5506–5511. [Google Scholar] [CrossRef]
- Liao, L.; Liu, K.; Wang, W.; Bai, X.; Wang, E.; Liu, Y.; Li, J.; Liu, C. Multiwall Boron Carbonitride/Carbon Nanotube Junction and Its Rectification Behavior. J. Am. Chem. Soc. 2007, 129, 9562–9563. [Google Scholar] [CrossRef]
- Lei, W.; Wang, J.; Yang, C.; Liu, D.; Cheng, C.; Fan, Y. Boron Carbon Nitride (BCN) Nanomaterials: Structures, Synthesis and Energy Applications. Curr. Graphene Sci. 2018, 2, 3–14. [Google Scholar] [CrossRef]
- Elumalai, G.; Noguchi, H.; Lyalin, A.; Taketsugu, T.; Uosaki, K. Gold nanoparticle decoration of insulating boron nitride nanosheet on inert gold electrode toward an efficient electrocatalyst for the reduction of oxygen to water. Electrochem. Commun. 2016, 66, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Hughes, J.P.; Blanco, F.D.; Banks, C.E.; Rowley-Neale, S.J. Mass-producible 2D-WS2 bulk modified screen printed electrodes towards the hydrogen evolution reaction. RSC Adv. 2019, 9, 25003–25011. [Google Scholar] [CrossRef] [Green Version]
- Ševčík, A. Oscillographic polarography with periodical triangular voltage. Collect. Czech. Chem. Commun. 1948, 13, 349–377. [Google Scholar] [CrossRef]
- Randles, J.E.B. A cathode ray polarograph. Part II.—The current-voltage curves. Trans. Faraday Soc. 1948, 44, 327–338. [Google Scholar] [CrossRef]
- Metters, J.P.; Randviir, E.P.; Banks, C.E. Screen-printed back-to-back electroanalytical sensors. Analyst 2014, 139, 5339–5349. [Google Scholar] [CrossRef] [Green Version]
- Kaskiala, T. Determination of oxygen solubility in aqueous sulphuric acid media. Miner. Eng. 2002, 15, 853–857. [Google Scholar] [CrossRef]
- Han, P.; Bartels, D.M. Temperature Dependence of Oxygen Diffusion in H2O and D2O. J. Phys. Chem. 1996, 100, 5597–5602. [Google Scholar] [CrossRef]
- Khan, A.F.; Brownson, D.A.C.; Randviir, E.P.; Smith, G.C.; Banks, C.E. 2D hexagonal boron nitride (2D-hBN) explored for the electrochemical sensing of dopamine. Analytical Chem. 2016, 88, 9729–9737. [Google Scholar] [CrossRef] [Green Version]
Catalyst | Substrate | Loading (mg cm−2) | Deposition Method | ORR Potential Onset (mV) | Electrolyte | Reference |
---|---|---|---|---|---|---|
- | GC | - | - | −780 (vs. SCE) | 0.1 M H2SO4 | [17] |
- | SPE | - | - | −1090 (vs. SCE) | 0.1 M H2SO4 | This work |
2D-hBN | GC | 0.0046 | Drop-casted | −1000 (vs. SCE) | 0.1 M H2SO4 | [17] |
2D-hBN | SPE | 0.0046 | Drop-casted | −810 (vs. SCE) | 0.1 M H2SO4 | [17] |
C-doped BN | GC RDE | 0.51 | Spin-coated | −800 (vs. RHE) | 0.1 M KOH | [20] |
2D-hBN/CVD Graphene | GC RDE | 0.025 | Drop-casted | −780 (vs. RHE) | 0.1 M KOH | [25] |
AuNPs-BNNS | Au RDE | 1.26 | Drop-casted | −670 (vs. RHE) | 0.05 M KOH | [26] |
BCN | GC RDE | 0.3 | Drop-casted | −840 (vs. RHE) | 0.1 M HClO4 | [27] |
Surfactant exfoliated 2D-hBN | SPE | 0.00053 | Drop-casted | −590 (vs. RHE) | 0.1 M H2SO4 | [18] |
BCN-doped CNTs | GC RDE | 0.1 | Drop-casted | −920 (vs. RHE) | 0.1 M KOH | [28] |
BCN nanosheet | GC RDE | 1.265 | Drop-casted | −650 (vs. RHE) | 0.1 M KOH | [29] |
2D-hBN | SPE | 5% | Screen-printed | −890 (vs. SCE) | 0.1 M H2SO4 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.F.; Ferrari, A.G.-M.; Hughes, J.P.; Smith, G.C.; Banks, C.E.; Rowley-Neale, S.J. 2D-Hexagonal Boron Nitride Screen-Printed Bulk-Modified Electrochemical Platforms Explored towards Oxygen Reduction Reactions. Sensors 2022, 22, 3330. https://doi.org/10.3390/s22093330
Khan AF, Ferrari AG-M, Hughes JP, Smith GC, Banks CE, Rowley-Neale SJ. 2D-Hexagonal Boron Nitride Screen-Printed Bulk-Modified Electrochemical Platforms Explored towards Oxygen Reduction Reactions. Sensors. 2022; 22(9):3330. https://doi.org/10.3390/s22093330
Chicago/Turabian StyleKhan, Aamar F., Alejandro Garcia-Miranda Ferrari, Jack P. Hughes, Graham C. Smith, Craig E. Banks, and Samuel J. Rowley-Neale. 2022. "2D-Hexagonal Boron Nitride Screen-Printed Bulk-Modified Electrochemical Platforms Explored towards Oxygen Reduction Reactions" Sensors 22, no. 9: 3330. https://doi.org/10.3390/s22093330
APA StyleKhan, A. F., Ferrari, A. G. -M., Hughes, J. P., Smith, G. C., Banks, C. E., & Rowley-Neale, S. J. (2022). 2D-Hexagonal Boron Nitride Screen-Printed Bulk-Modified Electrochemical Platforms Explored towards Oxygen Reduction Reactions. Sensors, 22(9), 3330. https://doi.org/10.3390/s22093330