Near-Fall Detection in Unexpected Slips during Over-Ground Locomotion with Body-Worn Sensors among Older Adults
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Experimental Setup
2.3. Slip Outcomes and Reactive Kinematics
2.4. Classification Models
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bergen, G.; Stevens, M.R.; Burns, E.R. Falls and fall injuries among adults aged ≥ 65 years—United States, 2014. Morb. Mortal. Wkly. Rep. 2016, 65, 993–998. [Google Scholar] [CrossRef]
- Berg, W.P.; Alessio, H.M.; Mills, E.M.; Tong, C. Circumstances and consequences of falls in independent community-dwelling older adults. Age Ageing 1997, 26, 261–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heijnen, M.J.H.; Rietdyk, S. Falls in young adults: Perceived causes and environmental factors assessed with a daily online survey. Hum. Mov. Sci. 2016, 46, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Boyé, N.D.; Van Lieshout, E.M.; Van Beeck, E.F.; Hartholt, K.A.; Van der Cammen, T.J.; Patka, P. The impact of falls in the elderly. Trauma 2013, 15, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Tuunainen, E.; Rasku, J.; Jantti, P.; Pyykko, I. Risk factors of falls in community dwelling active elderly. Auris Nasus Larynx 2014, 41, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Norton, R.; Campbell, A.J.; LeeJoe, T.; Robinson, E.; Butler, M. Circumstances of falls resulting in hip fractures among older people. J. Am. Geriatr. Soc. 1997, 45, 1108–1112. [Google Scholar] [CrossRef]
- Tinetti, M.E.; Speechley, M.; Ginter, S.F. Risk-Factors for Falls among Elderly Persons Living in the Community. N. Engl. J. Med. 1988, 319, 1701–1707. [Google Scholar] [CrossRef]
- Stevens, J.A.; Sogolow, E.D. Gender differences for non-fatal unintentional fall related injuries among older adults. Inj. Prev. 2005, 11, 115–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreland, J.; Richardson, J.; Chan, D.H.; O’Neill, J.; Bellissimo, A.; Grum, R.M.; Shanks, L. Evidence-based guidelines for the secondary prevention of falls in older adults. Gerontology 2003, 49, 93–116. [Google Scholar] [CrossRef] [PubMed]
- Schwickert, L.; Becker, C.; Lindemann, U.; Maréchal, C.; Bourke, A.; Chiari, L.; Helbostad, J.; Zijlstra, W.; Aminian, K.; Todd, C. Fall detection with body-worn sensors. Z. Gerontol. Geriatr. 2013, 46, 706–719. [Google Scholar] [CrossRef]
- Bet, P.; Castro, P.C.; Ponti, M.A. Fall detection and fall risk assessment in older person using wearable sensors: A systematic review. Int. J. Med. Inform. 2019, 130, 103946. [Google Scholar] [CrossRef] [PubMed]
- Pang, I.; Okubo, Y.; Sturnieks, D.; Lord, S.R.; Brodie, M.A. Detection of near falls using wearable devices: A systematic review. J. Geriatr. Phys. Ther. 2019, 42, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Broadley, R.W.; Klenk, J.; Thies, S.B.; Kenney, L.P.; Granat, M.H. Methods for the real-world evaluation of fall detection technology: A scoping review. Sensors 2018, 18, 2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peetoom, K.K.; Lexis, M.A.; Joore, M.; Dirksen, C.D.; De Witte, L.P. Literature review on monitoring technologies and their outcomes in independently living elderly people. Disabil. Rehabil. Assist. Technol. 2015, 10, 271–294. [Google Scholar] [CrossRef]
- Wang, K.; Delbaere, K.; Brodie, M.A.; Lovell, N.H.; Kark, L.; Lord, S.R.; Redmond, S.J. Differences between gait on stairs and flat surfaces in relation to fall risk and future falls. IEEE J. Biomed. Health Inform. 2017, 21, 1479–1486. [Google Scholar] [CrossRef] [PubMed]
- Ponti, M.; Bet, P.; Oliveira, C.L.; Castro, P.C. Better than counting seconds: Identifying fallers among healthy elderly using fusion of accelerometer features and dual-task Timed Up and Go. PLoS ONE 2017, 12, e0175559. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, M.R.; Redmond, S.J.; Scalzi, M.E.; Lord, S.R.; Celler, B.G.; Lovell, N.H. Longitudinal falls-risk estimation using triaxial accelerometry. IEEE Trans. Biomed. Eng. 2009, 57, 534–541. [Google Scholar] [CrossRef]
- Howcroft, J.; Lemaire, E.D.; Kofman, J.; McIlroy, W.E. Dual-task elderly gait of prospective fallers and non-fallers: A wearable-sensor based analysis. Sensors 2018, 18, 1275. [Google Scholar] [CrossRef] [Green Version]
- Di Rosa, M.; Hausdorff, J.M.; Stara, V.; Rossi, L.; Glynn, L.; Casey, M.; Burkard, S.; Cherubini, A. Concurrent validation of an index to estimate fall risk in community dwelling seniors through a wireless sensor insole system: A pilot study. Gait Posture 2017, 55, 6–11. [Google Scholar] [CrossRef]
- Choi, B.C.; Pak, A.W. Peer reviewed: A catalog of biases in questionnaires. Prev. Chronic Dis. 2005, 2, A13. [Google Scholar]
- Perell, K.L.; Nelson, A.; Goldman, R.L.; Luther, S.L.; Prieto-Lewis, N.; Rubenstein, L.Z. Fall risk assessment measures: An analytic review. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M761–M766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harari, Y.; Shawen, N.; Mummidisetty, C.K.; Albert, M.V.; Kording, K.P.; Jayaraman, A. A smartphone-based online system for fall detection with alert notifications and contextual information of real-life falls. J. Neuroeng. Rehabil. 2021, 18, 124. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, V.; Nuzzolese, N.; Barone, D.; Pantaleo, M.; Suma, M.; D’Ambruoso, D.; Volpe, A.; Loconsole, C.; Stroppa, F. Fall detection in indoor environment with kinect sensor. In Proceedings of the 2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings, Alberobello, Italy, 23–25 June 2014; pp. 319–324. [Google Scholar]
- Dresner-Pollak, R.; Ginsberg, G.; Cohen, A.; Stessman, J. Characteristics of falls in 70 year olds in Jerusalem. Isr. J. Med. Sci. 1996, 32, 625–628. [Google Scholar] [PubMed]
- Bath, P.A.; Morgan, K. Differential risk factor profiles for indoor and outdoor falls in older people living at home in Nottingham, UK. Eur. J. Epidemiol. 1999, 15, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kangas, M.; Vikman, I.; Nyberg, L.; Korpelainen, R.; Lindblom, J.; Jämsä, T. Comparison of real-life accidental falls in older people with experimental falls in middle-aged test subjects. Gait Posture 2012, 35, 500–505. [Google Scholar] [CrossRef]
- Bagala, F.; Becker, C.; Cappello, A.; Chiari, L.; Aminian, K.; Hausdorff, J.M.; Zijlstra, W.; Klenk, J. Evaluation of accelerometer-based fall detection algorithms on real-world falls. PLoS ONE 2012, 7, e37062. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, S.; Thompson, H.; Demiris, G. Fall detection devices and their use with older adults: A systematic review. J. Geriatr. Phys. Ther. 2014, 37, 178. [Google Scholar] [CrossRef] [Green Version]
- Hemmatpour, M.; Ferrero, R.; Montrucchio, B.; Rebaudengo, M. A baseline walking dataset exploiting accelerometer and gyroscope for fall prediction and prevention systems. In Proceedings of the 11th EAI International Conference on Body Area Networks, Turin, Italy, 15–16 December 2016; pp. 81–85. [Google Scholar]
- Bohm, S.; Mademli, L.; Mersmann, F.; Arampatzis, A. Predictive and reactive locomotor adaptability in healthy elderly: A systematic review and meta-analysis. Sports Med. 2015, 45, 1759–1777. [Google Scholar] [CrossRef] [Green Version]
- Arnold, C.M.; Faulkner, R.A. The history of falls and the association of the timed up and go test to falls and near-falls in older adults with hip osteoarthritis. BMC Geriatr. 2007, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Ryan, J.W.; Dinkel, J.L.; Petrucci, K. Near falls incidence: A study of older adults in the community. J. Gerontol. Nurs. 1993, 19, 23–28. [Google Scholar] [CrossRef]
- Wiles, C.M.; Busse, M.E.; Sampson, C.M.; Rogers, M.T.; Fenton-May, J.; van Deursen, R. Falls and stumbles in myotonic dystrophy. J. Neurol. Neurosurg. Psychiatry 2006, 77, 393–396. [Google Scholar] [CrossRef] [Green Version]
- Srygley, J.M.; Herman, T.; Giladi, N.; Hausdorff, J.M. Self-report of missteps in older adults: A valid proxy of fall risk? Arch. Phys. Med. Rehabil. 2009, 90, 786–792. [Google Scholar] [CrossRef] [Green Version]
- Teno, J.; Kiel, D.P.; Mor, V. Multiple Stumbles: A Risk Factor for Falls in Community-Dwelling Elderly; A Prospective Study. J. Am. Geriatr. Soc. 1990, 38, 1321–1325. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Ogawa, M.; Loenneke, J.P.; Thiebaud, R.S.; Loftin, M.; Mitsukawa, N. Association between site-specific muscle loss of lower body and one-leg standing balance in active women: The HIREGASAKI study. Geriatr. Gerontol. Int. 2014, 14, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Karel, J.M.; Senden, R.; Janssen, J.E.; Savelberg, H.; Grimm, B.; Heyligers, I.; Peeters, R.; Meijer, K. Towards unobtrusive in vivo monitoring of patients prone to falling. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 5018–5021. [Google Scholar]
- Weiss, A.; Shimkin, I.; Giladi, N.; Hausdorff, J.M. Automated detection of near falls: Algorithm development and preliminary results. BMC Res. Notes 2010, 3, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watt, J.R.; Franz, J.R.; Jackson, K.; Dicharry, J.; Riley, P.O.; Kerrigan, D.C. A three-dimensional kinematic and kinetic comparison of overground and treadmill walking in healthy elderly subjects. Clin. Biomech. 2010, 25, 444–449. [Google Scholar] [CrossRef]
- Luukinen, H.; Herala, M.; Koski, K.; Honkanen, R.; Laippala, P.; Kivelä, S.-L. Fracture risk associated with a fall according to type of fall among the elderly. Osteoporos. Int. 2000, 11, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Mubashir, M.; Shao, L.; Seed, L. A survey on fall detection: Principles and approaches. Neurocomputing 2013, 100, 144–152. [Google Scholar] [CrossRef]
- Aziz, O.; Musngi, M.; Park, E.J.; Mori, G.; Robinovitch, S.N. A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials. Med. Biol. Eng. Comput. 2017, 55, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, R.; Zhang, H.; Tian, L.; Chen, N. Intelligent fall detection method based on accelerometer data from a wrist-worn smart watch. Measurement 2019, 140, 215–226. [Google Scholar] [CrossRef]
- Jing, L.; Zhao, M.; Li, P.; Xu, X. A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox. Measurement 2017, 111, 1–10. [Google Scholar] [CrossRef]
- Xin, Y.; Kong, L.; Liu, Z.; Chen, Y.; Li, Y.; Zhu, H.; Gao, M.; Hou, H.; Wang, C. Machine learning and deep learning methods for cybersecurity. IEEE Access 2018, 6, 35365–35381. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Thompson, P.W.; Taylor, J.; Oliver, R.; Fisher, A. Quantitative ultrasound (QUS) of the heel predicts wrist and osteoporosis-related fractures in women age 45-75 years. J. Clin. Densitom. Off. J. Int. Soc. Clin. Densitom. 1998, 1, 219–225. [Google Scholar] [CrossRef]
- Okubo, Y.; Schoene, D.; Lord, S.R. Step training improves reaction time, gait and balance and reduces falls in older people: A systematic review and meta-analysis. Br. J. Sport Med. 2017, 51, 586–593. [Google Scholar] [CrossRef]
- Yong, R.; Karas, T.J.; Smith, K.D.; Petrov, O. The durability of the Semmes-Weinstein 5.07 monofilament. J. Foot Ankle Surg. 2000, 39, 34–38. [Google Scholar] [CrossRef]
- Pai, Y.C.; Yang, F.; Bhatt, T.; Wang, E. Learning from laboratory-induced falling: Long-term motor retention among older adults. Age 2014, 36, 1367–1376. [Google Scholar] [CrossRef]
- Bhatt, T.; Wening, J.D.; Pai, Y.C. Adaptive control of gait stability in reducing slip-related backward loss of balance. Exp. Brain Res. 2006, 170, 61–73. [Google Scholar] [CrossRef]
- Wang, F.-T.; Chan, H.-L.; Hsu, M.-H.; Lin, C.-K.; Chao, P.-K.; Chang, Y.-J. Threshold-based fall detection using a hybrid of tri-axial accelerometer and gyroscope. Physiol. Meas. 2018, 39, 105002. [Google Scholar] [CrossRef]
- Bourke, A.K.; O’Brien, J.V.; Lyons, G.M. Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait Posture 2007, 26, 194–199. [Google Scholar] [CrossRef]
- Deng, H.T.; Runger, G.; Tuv, E.; Vladimir, M. A time series forest for classification and feature extraction. Inf. Sci 2013, 239, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.L.; Gsponer, S.; Ilie, I.; O’Reilly, M.; Ifrim, G. Interpretable time series classification using linear models and multi-resolution multi-domain symbolic representations. Data Min. Knowl. Discov. 2019, 33, 1183–1222. [Google Scholar] [CrossRef]
- Le Guennec, A.; Malinowski, S.; Tavenard, R. Data augmentation for time series classification using convolutional neural networks. In Proceedings of the ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data 2016, Riva del Garda, Italy, 19–23 September 2016. [Google Scholar]
- Fawaz, H.I.; Lucas, B.; Forestier, G.; Pelletier, C.; Schmidt, D.F.; Weber, J.; Webb, G.I.; Idoumghar, L.; Muller, P.-A.; Petitjean, F. InceptionTime: Finding AlexNet for time series classification. Data Min. Knowl. Discov. 2020, 34, 1936–1962. [Google Scholar] [CrossRef]
- Pai, Y.C.; Bhatt, T.; Wang, E.; Espy, D.; Pavol, M.J. Inoculation Against Falls: Rapid Adaptation by Young and Older Adults to Slips During Daily Activities. Arch. Phys. Med. Rehab. 2010, 91, 452–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, H.; Bai, Y.; Panagiotakos, D.; Garcia, E.; Li, S.A. Adaptive synthetic sampling approach for imbalanced learning. In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–8 June 2008. [Google Scholar] [CrossRef] [Green Version]
- Brady, R.A.; Pavol, M.J.; Owings, T.M.; Grabiner, M.D. Foot displacement but not velocity predicts the outcome of a slip induced in young subjects while walking. J. Biomech. 2000, 33, 803–808. [Google Scholar] [CrossRef]
- Troy, K.L.; Donovan, S.J.; Marone, J.R.; Bareither, M.L.; Grabiner, M.D. Modifiable performance domain risk-factors associated with slip-related falls. Gait Posture 2008, 28, 461–465. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.J.; Pai, Y.C.; Bhatt, T. Is There an Optimal Recovery Step Landing Zone Against Slip-Induced Backward Falls During Walking? Ann. Biomed. Eng. 2020, 48, 1768–1778. [Google Scholar] [CrossRef]
- Yang, F.; Bhatt, T.; Pai, Y.C. Role of stability and limb support in recovery against a fall following a novel slip induced in different daily activities. J. Biomech. 2009, 42, 1903–1908. [Google Scholar] [CrossRef] [Green Version]
- McDowel, C.; Smyk, M.; Sung, P.S. Compensatory strategy between trunk-hip kinematics and reaction time following slip perturbation between subjects with and without chronic low back pain. J. Electromyogr. Kinesiol. 2018, 43, 68–74. [Google Scholar] [CrossRef]
- Parijat, P.; Lockhart , T.E. Effects of lower extremity muscle fatigue on the outcomes of slip-induced falls. Ergonomics 2008, 51, 1873–1884. [Google Scholar] [CrossRef] [Green Version]
- Zijlstra, G.A.R.; van Haastregt, J.C.M.; van Rossum, E.; van Eijk, J.T.M.; Yardley, L.; Kempen, G.I.J.M. Interventions to reduce fear of falling in community-living older people: A systematic review. J. Am. Geriatr. Soc. 2007, 55, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Shigematsu, R.; Okura, T.; Sakai, T.; Rantanen, T. The Effects of Square Stepping Exercise vs. Strength and Balance Training on Fall Risk Factors. Med. Sci. Sport Exer. 2006, 38, S331. [Google Scholar] [CrossRef]
- Yoon, H.Y.; Lockhart , T.E. Nonfatal occupational injuries associated with slips and falls in the United States. Int. J. Ind. Ergon. 2006, 36, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Tan, K.K.; Lee, T.H.; Koh, G.C.H. Power-Efficient Interrupt-Driven Algorithms for Fall Detection and Classification of Activities of Daily Living. IEEE Sens. J. 2015, 15, 1377–1387. [Google Scholar] [CrossRef]
- Chelli , A.; Patzold , M. A Machine Learning Approach for Fall Detection and Daily Living Activity Recognition. IEEE Access 2019, 7, 38670–38687. [Google Scholar] [CrossRef]
- FRAIL—Frail Assessment in Daily Living Detection of Fall Events and Monitoring of physical Activity of elderly People in frail or pre-frail Health Condition. Z. Gerontol. Geriatr. 2019, 52, S155.
- Shah, S.A.; Tahir, A.; Le Kernec, J.; Zoha, A.; Fioranelli, F. Data portability for activities of daily living and fall detection in different environments using radar micro-doppler. Neural Comput. Appl. 2022, 34, 7933–7953. [Google Scholar] [CrossRef]
- Wang, S.J.; Varas-Diaz, G.; Bhatt , T. Muscle synergy differences between voluntary and reactive backward stepping. Sci. Rep. 2021, 11, 15462. [Google Scholar] [CrossRef]
- Trkov, M.; Chen, K.; Yi, J.; Liu, T. Inertial sensor-based slip detection in human walking. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1399–1411. [Google Scholar] [CrossRef]
- Trkov, M.; Chen, K.; Yi, J.; Liu, T. Slip detection and prediction in human walking using only wearable inertial measurement units (IMUs). In Proceedings of the 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Busan, Korea, 7–11 July 2015; pp. 854–859. [Google Scholar]
- Meyer, B.M.; Tulipani, L.J.; Gurchiek, R.D.; Allen, D.A.; Adamowicz, L.; Larie, D.; Solomon, A.J.; Cheney, N.; McGinnis, R.S. Wearables and deep learning classify fall risk from gait in multiple sclerosis. IEEE J. Biomed. Health Inform. 2020, 25, 1824–1831. [Google Scholar] [CrossRef]
- Nait Aicha, A.; Englebienne, G.; Van Schooten, K.S.; Pijnappels, M.; Kröse, B. Deep learning to predict falls in older adults based on daily-life trunk accelerometry. Sensors 2018, 18, 1654. [Google Scholar] [CrossRef] [Green Version]
- Palmerini, L.; Klenk, J.; Becker, C.; Chiari, L. Accelerometer-based fall detection using machine learning: Training and testing on real-world falls. Sensors 2020, 20, 6479. [Google Scholar] [CrossRef]
- Hussain, F.; Umair, M.B.; Ehatisham-ul-Haq, M.; Pires, I.M.; Valente, T.; Garcia, N.M.; Pombo, N. An efficient machine learning-based elderly fall detection algorithm. arXiv 2019, arXiv:1911.11976. [Google Scholar]
- Sucerquia, A.; López, J.D.; Vargas-Bonilla, J.F. SisFall: A fall and movement dataset. Sensors 2017, 17, 198. [Google Scholar] [CrossRef]
- Tang, P.F.; Woollacott, M.H.; Chong, R.K.Y. Control of reactive balance adjustments in perturbed human walking: Roles of proximal and distal postural muscle activity. Exp. Brain Res. 1998, 119, 141–152. [Google Scholar] [CrossRef]
- Nieuwenhuijzen, P.H.; Duysens, J. Proactive and reactive mechanisms play a role in stepping on inverting surfaces during gait. J. Neurophysiol. 2007, 98, 2266–2273. [Google Scholar] [CrossRef] [Green Version]
Method | LOB | NLOB | p Value |
---|---|---|---|
Stride length/height | 0.41 ± 0.18 | 0.70 ± 0.15 | <0.001 |
Slip distance (m) | 0.31 ± 0.16 | 0.08 ± 0.13 | <0.001 |
Slip velocity(m/s) | 1.12 ± 0.74 | −0.34 ± 0.62 | <0.001 |
Trunk angle(degree) | 4.9 ± 8.22 | −1.46 ± 7.72 | <0.001 |
Method | Accuracy at Default Cutoff | Accuracy at Optimal Cutoff | Accuracy with ADASYN | ||||||
---|---|---|---|---|---|---|---|---|---|
Spe | Sen | Overall | Spe | Sen | Overall | Spe | Sen | Overall | |
TSF | 94.4% | 45.4% | 80.3% | 81.8% | 74.3% | 80.0% | 86.1% | 56.8% | 77.6% |
Mr-SEQL | 82.7% | 37.1% | 69.5% | 58.6% | 67.7% | 60.8% | 73.7% | 40.7% | 64.1% |
TLeNet | 90.2% | 64.2% | 82.7% | 83.8% | 79.9% | 82.9% | 90.4% | 67.7% | 83.8% |
Inception | 94.8% | 69.4% | 87.5% | 84.8% | 86.5% | 85.2% | 92.0% | 73.8% | 86.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Miranda, F.; Wang, Y.; Rasheed, R.; Bhatt, T. Near-Fall Detection in Unexpected Slips during Over-Ground Locomotion with Body-Worn Sensors among Older Adults. Sensors 2022, 22, 3334. https://doi.org/10.3390/s22093334
Wang S, Miranda F, Wang Y, Rasheed R, Bhatt T. Near-Fall Detection in Unexpected Slips during Over-Ground Locomotion with Body-Worn Sensors among Older Adults. Sensors. 2022; 22(9):3334. https://doi.org/10.3390/s22093334
Chicago/Turabian StyleWang, Shuaijie, Fabio Miranda, Yiru Wang, Rahiya Rasheed, and Tanvi Bhatt. 2022. "Near-Fall Detection in Unexpected Slips during Over-Ground Locomotion with Body-Worn Sensors among Older Adults" Sensors 22, no. 9: 3334. https://doi.org/10.3390/s22093334
APA StyleWang, S., Miranda, F., Wang, Y., Rasheed, R., & Bhatt, T. (2022). Near-Fall Detection in Unexpected Slips during Over-Ground Locomotion with Body-Worn Sensors among Older Adults. Sensors, 22(9), 3334. https://doi.org/10.3390/s22093334