The Effect of EMG Features on the Classification of Swallowing Events and the Estimation of Fluid Intake Volume
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Classification
3.2. Volume Estimation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations, Department of Economics and Social Affairs. 2019. Available online: https://www.un.org/development/desa/publications/world-population-prospects-2019-highlights.html (accessed on 20 November 2019).
- Cook, G.; Hodgson, P.; Hope, C.; Thompson, J.; Shaw, L. Hydration practices in residential and nursing care homes for older people. J. Clin. Nurs. 2018, 28, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
- Lea, E.J.; Goldberg, L.R.; Price, A.D.; Tierney, L.T.; McInerney, F. Staff Awareness of Food and Fluid Care Needs for Older People with Dementia in Residential Care: A Qualitative Study. J. Clin. Nurs. 2017, 26, 5169–5178. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.; Bunn, D.; Jimoh, F.O.; Fairweather-Tait, S.J. Water-loss Dehydration and Ageing. Mech. Ageing Dev. 2014, 136–137, 50–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botigué, T.; Masot, O.; Miranda, J.; Nuin, C.; Viladrosa, M.; Lavedán, A.; Zwakhalen, S. Prevalence and Risk Factors Associated with Low Fluid Intake in Institutionalized Older Residents. J. Am. Med. Dir. Assoc. 2018, 20, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Archer, S.J.; Barna, A.E.; Holper, R.M.; McNally Forsith, D.; Ellenbecker, S.M.; Smith, L.K.; Clobes, J.E.; Meiers, S.J.; Malone, C.; Lapid, M.I. Associations Among Fluid Intake, Cognitive Function, and Length of Stay in Psychogeriatric Inpatients. Perspect. Psychiatr. Care 2015, 51, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Konings, F.J.C.M.; Mathijssen, J.J.P.; Schellingerhout, J.M.; Kroesbergen, I.H.T.; Goede de, J.; Goor de, I.A.M. Prevention of Dehydration in Independently Living Elderly People at Risk: A Study Protocol of a Randomized Controlled Trial. Int. J. Prev. 2015, 6, 103. [Google Scholar] [CrossRef] [PubMed]
- Lima Ribeiro, S.M.; Morley, J.E. Dehydration is difficult to detect and prevent in nursing homes. J. Am. Med. Dir. Assoc. 2015, 16, 175–176. [Google Scholar] [CrossRef] [PubMed]
- Stookey, J.D.; Allu, P.; Chabas, D.; Pearce, D.; Lang, F. Hypotheses about sub-optimal hydration in the weeks before coronavirus disease (COVID-19) as a risk factor for dying from COVID-19. Med. Hypotheses 2020, 144, 110237. [Google Scholar] [CrossRef] [PubMed]
- Stookey, J.D. Analysis of 2009–2012 Nutrition Health and Examination Survey (NHANES) Data to Estimate the Median Water Intake Associated with Meeting Hydration Criteria for Individuals Aged 12–80 in the US Population. Nutrients 2019, 11, 657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masot, O.; Lavedán, A.; Nuin, C.; Escobar-Bravo, M.A.; Miranda, J.; Botigué, T. Risk Factors Associated with Dehydration in Older People Living in Nursing Homes: Scoping Review. Int. J. Nurs. Stud. 2018, 82, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.R.; Cote, T.R.; Lawhorne, L.; Levenson, S.A.; Rubenstein, L.Z.; Smith, D.A.; Stefanacci, R.G.; Tangalos, E.G.; Morley, J.E.; Dehydration Council. Understanding Clinical Dehydration and Its Treatment. Rev. JAMDA 2018, 9, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.; Hahn, R.G. Signs of Dehydration in Nursing Home Residents. JAMDA 2018, 19, 1124–1128. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.A. Dehydration: Hazards and Benefits. Geriatr. Nurs. 2000, 21, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, A.; Minaker, K.L.; Council on Scientific Affairs; American Medical Association. Dehydration—Evaluation and Management in Older Adults. JAMA 1995, 274, 1552–1556. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, H.; Cloete, J.; Dymond, E.; Long, A. An Exploration of the Hydration Care of Older People: A Qualitative Study. Int. J. Nurs. Stud. 2012, 49, 1200–1211. [Google Scholar] [CrossRef] [PubMed]
- El-Sharkawy, A.M.; Watson, P.; Neal, K.R.; Ljungqvist, O.; Maughan, R.J.; Sahota, O.; Lobo, D.N. Hydration and outcome in older patients admitted to hospital (The HOOP prospective cohort study). Age Ageing 2015, 44, 943–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, H.; Barber, J.; Campbell, E.S. Economic Burden of Dehydration among Hospitalized Elderly Patients. Am. J. Health Syst. Pharm. 2004, 61, 2534–2540. [Google Scholar] [CrossRef] [PubMed]
- Nakafuji, H.; Imura, M.; Uranishi, Y.; Yoshimoto, S.; Oshiro, O. Estimation of Amount of Swallowed Water by Analysis of Swallowing Sounds; Kyoto University Hospital: Kyoto, Japan, 2015; pp. 1–6. [Google Scholar]
- Kobayashi, Y.; Mineno, H. Fluid intake recognition for nursing care support by leveraging swallowing sound. In Proceedings of the 2014 IEEE 3rd Global Conference on Consumer Electronics (GCCE), Tokyo, Japan, 7–10 October 2014. [Google Scholar]
- Amft, O.; Troster, G. Methods for Detection and Classification of Normal Swallowing from Muscle Activation and Sound. In Proceedings of the Pervasive Health Conference and Workshops, Innsbruck, Austria, 29 November–1 December 2006. [Google Scholar]
- Zhu, M.; Yu, B.; Yang, W.; Jiang, Y.; Lu, L.; Huang, Z.; Chen, S.; Li, G. Evaluation of normal swallowing functions by using dynamic high density surface electromyography maps. BioMed Eng. OnLine 2017, 16, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyaoka, Y.; Ashida, I.; Kawakami, S.; Tamaki, Y.; Miyaoka, S. Activity patterns of the suprahyoid muscles during swallowing of different volumes. J. Oral Rehabil. 2010, 37, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Malvuccio, C.; Kamavuako, E.N. Detection of Swallowing Events and Fluid Intake Volume Estimation from Surface Electromyography Signals. In Proceedings of the 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Langkawi Island, Malaysia, 1–3 March 2021. [Google Scholar]
- Phinyomark, A.; Quaine, F.; Charbonnier, S.; Serviere, C.; Tarpin-Bernard, F.; Laurillau, Y. EMG feature evaluation for improving myoelectric pattern recognition robustness. Expert Syst. Appl. 2013, 40, 4832–4840. [Google Scholar] [CrossRef]
Feature Full Name | Abbreviation | Parameters |
---|---|---|
Integrated EMG | IEMG | - |
Mean Absolute Value | MAV | - |
Mean Absolute Value 1 | MAV 1 | - |
Mean Absolute Value 2 | MAV 2 | - |
Simple Squared Integral | SSI | - |
Variance of EMG | VAR | - |
Root Mean Square | RMS | - |
Second V-Order | V2 | v = 2 |
Third V-Order | V3 | v = 3 |
Log Detector | LOG | - |
Waveform Length | WL | - |
Average Amplitude Change | AAC | - |
Difference Absolute Standard Deviation Value | DASDV | - |
Maximum Fractal Length | MFL | - |
Myopulse Percentage Rate | MYOP | threshold = 5.5 μ |
Willinson Amplitude | WAMP | threshold = 0.3 × σ (noise) |
Modified Mean Absolute Value | MMAV | - |
Zero Crossing | ZC | threshold = 0.3 × σ (noise) |
Slope Sign Change | SSC | - |
Abs. val. of Third Temporal Moment | TM3 | order = 3 |
Abs. val. of Fourth Temporal Moment | TM4 | order = 4 |
Abs. val. of Fifth Temporal Moment | TM5 | order = 5 |
Abs value of the Summation of Square Root | ASS | - |
Mean Value of Square Root | MSR | - |
Absolute value of the Summation of the expth root of the given signal and its Mean | ASM | - |
Kurtosis | Kurt | - |
Skewness | Skew | - |
Amplitude of the First burst | AFB | - |
Mean Power | MNP | - |
Total Power | TTP | - |
Median Frequency | MDF | - |
Mean Frequency | MNF | - |
Peak Frequency | PKF | - |
First Spectral Moment | SM1 | order = 1 |
Second Spectral Moment | SM2 | order = 2 |
Third Spectral Moment | SM3 | order = 3 |
Frequency Ratio | FR | lc < MNF; hc > MNF |
Mean Power Density | MPD | - |
Power Spectrum Deformation | PSDd | - |
Variance of Central Frequency | VCF | - |
Higuchi Fractal Dimension | HFD | k = 128 |
Sample Entropy | SaEn | m = 2, r = 0.2 σ |
Approximate Entropy | ApEn | m = 2, r = 0.2 σ |
Maximum to Minimum Drop in Power Density Ratio | dPDR | - |
Power Spectrum Ratio | PSR | n = 20 |
Area Under the Curve | AUC | - |
LDA | KNN | ||||||||
---|---|---|---|---|---|---|---|---|---|
Accuracy | Sensitivity | Specificity | Precision | F Score | Accuracy | Sensitivity | Specificity | Precision | F Score |
95.80 ± 4.62 | 96.02 ± 6.42 | 95.61 ± 4.69 | 93.64 ± 7.14 | 94.71 ± 5.92 | 94.84 ± 4.32 | 94.89 ± 6.74 | 94.72 ± 3.54 | 92.30 ± 5.52 | 93.52 ± 5.69 |
95.51 ± 3.86 | 94.89 ± 5.46 | 95.96 ± 4.56 | 94.18 ± 6.67 | 94.39 ± 4.86 | 95.94 ± 2.76 | 96.02 ± 5.78 | 95.84 ± 3.62 | 94.17 ± 4.80 | 94.93 ± 3.51 |
Subject | Mean (mL) | SD (mL) | Error (%) |
---|---|---|---|
F20 | 23.83 | 5.13 | 15.35 |
F22 | 19.42 | 5.17 | 22.94 |
F28 | 8.73 | 3.05 | 29.05 |
M20 | 12.19 | 4.33 | 34.10 |
M21 | 11.40 | 3.71 | 30.04 |
M211 | 13.67 | 3.15 | 17.34 |
M25 | 18.72 | 6.14 | 28.50 |
M251 | 7.14 | 2.96 | 40.73 |
M27 | 12.73 | 3.98 | 28.01 |
M29 | 15.13 | 5.99 | 32.71 |
M67 | 21.33 | 8.75 | 43.67 |
Across All | 14.93 | 5.29 | 29.31 |
Features | RMSE (mL) | Average Estimation Error (%) |
---|---|---|
ASM | 3.90 ± 1.58 | 24.63 ± 7.03 |
ASM, TM4 | 3.98 ± 1.60 | 25.11 ± 8.07 |
Features | RMSE (mL) | Average Estimation Error (%) |
---|---|---|
SSC | 3.84 ± 2.52 | 19.35 ± 11.60 |
SSC, MPD | 2.80 ± 1.22 | 15.43 ± 8.64 |
SSC, MPD, VAR | 3.45 ± 1.71 | 16.80 ± 6.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malvuccio, C.; Kamavuako, E.N. The Effect of EMG Features on the Classification of Swallowing Events and the Estimation of Fluid Intake Volume. Sensors 2022, 22, 3380. https://doi.org/10.3390/s22093380
Malvuccio C, Kamavuako EN. The Effect of EMG Features on the Classification of Swallowing Events and the Estimation of Fluid Intake Volume. Sensors. 2022; 22(9):3380. https://doi.org/10.3390/s22093380
Chicago/Turabian StyleMalvuccio, Carlotta, and Ernest N. Kamavuako. 2022. "The Effect of EMG Features on the Classification of Swallowing Events and the Estimation of Fluid Intake Volume" Sensors 22, no. 9: 3380. https://doi.org/10.3390/s22093380
APA StyleMalvuccio, C., & Kamavuako, E. N. (2022). The Effect of EMG Features on the Classification of Swallowing Events and the Estimation of Fluid Intake Volume. Sensors, 22(9), 3380. https://doi.org/10.3390/s22093380