Ballistic Deficit Pulse Processing in Cadmium–Zinc–Telluride Pixel Detectors for High-Flux X-ray Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. The CZT Pixel Detectors
2.2. The Preamplifiers and the Digital Pulse Processing Electronics
- (i)
- Pulse detection and arrival time estimation; the CSP output waveforms were shaped using the classical single delay line (SDL) shaping technique [26], acting as the classical differentiation; the trigger time was generated and time-stamped through the ARC (amplitude and rise time compensation) timing marker (at the leading edge of the SDL pulses), able to reduce the distortions from time jitters and amplitude and rise time walks [26];
- (ii)
- Pulse height analysis (energy estimation); the detected CSP output pulses with the related arrival times were shaped with a classical trapezoidal filter [26]. We used trapezoidal-shaped pulses with peaking times (TS) ranging from 30 ns to 1000 ns.
2.3. Experimental Procedures
3. Ballistic Deficit Pulse Processing in CZT Pixel Detectors: Measurements and Results
3.1. Energy Resolution and Throughput
3.2. Energy Linearity and Time Stability
3.3. Charge Sharing
3.4. High Flux Performance
4. Discussion
- -
- All detectors showed good energy resolutions of about 4% FWHM at 122 keV, in particular when compared with the energy resolution of about 8% obtained with 3-mm CdTe pixel detectors using similar ballistic deficit pulse processing [29]; this is due to the high bias voltage operation of the detectors (>5000 V/cm) which minimizes the changes of the charge collection times and, therefore, the effects of ballistic deficit; moreover, the series noise, very important in this shaping set-up, was also mitigated by the low noise front-end electronics (PIXIE ASICs).
- -
- The linearity of the pulse heights with the energy was verified in all CZT detectors.
- -
- We observed the absence of time instabilities, typically present in CdTe pixel detectors with quasi-ohmic electrical contacts [29]; this demonstrated the time stability of the electric field lines in the quasi-ohmic (Au, Pt) CZT detectors, highlighting the absence of space charge changes with time in CZT materials.
- -
- The ballistic deficit pulse processing did not increase the charge losses after the charge sharing addition (CSA) and the energy recovery was successfully applied.
- -
- At high rates (560 kcps), we measured energy spectra with very high throughput (95%), low pile-up effects, and a similar energy resolution obtained with the energy resolution pulse processing approach; potentially, the dead time of 90 ns, modelled as paralyzable dead time, can ensure a maximum output counting rate (OCR) of 4.1 Mcps.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barber, W.C.; Wessel, J.C.; Nygard, E.; Iwanczyk, J.S. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications. Nucl. Instr. Meth. A 2015, 784, 531–537. [Google Scholar] [CrossRef] [Green Version]
- Del Sordo, S.; Strazzeri, M.; Agnetta, G.; Biondo, B.; Celi, F.; Giarrusso, S.; Mangano, A.; Russo, F.; Caroli, E.; Donati, A.; et al. Spectroscopic performances of 16 × 16 pixel CZT imaging hard-X-ray detectors. Nuovo Cim. B 2004, 119, 257–270. [Google Scholar]
- Iwanczyk, J.; Nygard, E.; Meirav, O.; Arenson, J.; Barber, W.C.; Hartsough, N.E.; Malakhov, N.; Wessel, J.C. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging. IEEE Trans. Nucl. Sci. 2009, 56, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Seller, P.; Bell, S.; Cernik, R.J.; Christodoulou, C.; Egan, C.K.; Gaskin, J.A.; Jacques, S.; Pani, S.; Ramsey, B.D.; Reid, C.; et al. Pixellated Cd(Zn)Te high-energy X-ray instrument. J. Inst. 2011, 6, C12009. [Google Scholar] [CrossRef]
- Szeles, C.; Soldner, S.A.; Vydrin, S.; Graves, J.; Bale, D.S. CdZnTe Semiconductor Detectors for Spectroscopic X-ray Imaging. IEEE Trans. Nucl. Sci. 2008, 55, 572–582. [Google Scholar] [CrossRef]
- Abbene, L.; Gerardi, G.; Principato, F. Digital performance improvements of a CdTe pixel detector for high flux energy-resolved X-ray imaging. Nucl. Instr. Meth. A 2015, 777, 54–62. [Google Scholar] [CrossRef]
- Iniewski, K. CZT detector technology for medical imaging. J. Inst. 2014, 9, C11001. [Google Scholar] [CrossRef]
- Nguyen, J.; Rodesch, P.A.; Richtsmeier, D.; Iniewski, K.; Bazalova-Carter, M. Optimization of a CZT photon counting detector for contaminant detection. J. Inst. 2021, 16, P11015. [Google Scholar] [CrossRef]
- Richtsmeier, D.; Guliyev, E.; Iniewski, K.; Bazalova-Carter, M. Contaminant detection in non-destructive testing using a CZT photon-counting detector. J. Inst. 2021, 16, P01011. [Google Scholar] [CrossRef]
- Del Sordo, S.; Abbene, L.; Caroli, E.; Mancini, A.M.; Zappettini, A.; Ubertini, P. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors 2009, 9, 3491–3526. [Google Scholar] [CrossRef]
- Owens, A. Semiconductor materials and radiation detection. J. Synchrotron Rad. 2006, 13, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Gutiérrez, C.A.; Casallas-Moreno, Y.L.; Cardona, D.; Kudriavtsev, Y.; Santana-Rodríguez, G.; Mendoza-Pérez, R.; Contreras-Puente, G.; López-López, M.; Contreras-Puenteg, G.; Mendez-Garcia, V.H.; et al. Characterization of n-GaN/p-GaAs NP heterojunctions. Superlattices Microstruct. 2019, 136, 106298. [Google Scholar] [CrossRef]
- Reyes-Banda, M.G.; Regalado-Perez, E.; Pintor-Monroy, M.I.; Hernández-Gutiérrez, C.A.; Quevedo-López, M.A.; Mathew, X. Effect of Se diffusion and the role of a thin CdS buffer layer in the performance of a CdSe/CdTe solar cell. Superlattices Microstruct. 2019, 133, 106219. [Google Scholar] [CrossRef]
- Hernández-Gutiérrez, C.A.; Kudriavtsev, Y.; Mota, E.; Hernández, A.G.; Escobosa-Echavarría, A.; Sánchez-Resendiz, V.; Casallas-Moreno, Y.L.; López-López, M. A new method of making ohmic contacts to p-GaN. Nucl. Instr. Meth. B 2016, 388, 35–40. [Google Scholar] [CrossRef]
- Sammartini, M.; Gandola, M.; Mele, F.; Garavelli, B.; Macera, D.; Pozzi, P.; Bertuccio, G. X–γ -ray spectroscopy with a CdTe pixel detector and SIRIO preamplifier at deep sub microsecond signal-processing time. IEEE Trans. Nucl. Sci. 2021, 68, 70–75. [Google Scholar] [CrossRef]
- Sammartini, M.; Gandola, M.; Mele, F.; Garavelli, B.; Macera, D.; Pozzi, P.; Bertuccio, G. A CdTe pixel detector–CMOS preamplifier for room temperature high sensitivity and energy resolution X and γ ray spectroscopic imaging. Nucl. Instr. Meth. A 2018, 910, 168–173. [Google Scholar] [CrossRef]
- Wilson, M.D.; Bell, S.J.; Cernik, R.J.; Christodoulou, C.; Egan, C.K.; O’Flynn, D.; Jacques, S.; Veale, M.C.; Pani, S.; Scuffham, J.; et al. Multiple module pixellated CdTe spectroscopic X-ray detector. IEEE Trans. Nucl. Sci. 2013, 60, 1197–1200. [Google Scholar] [CrossRef]
- Meuris, A.; Limousin, O.; Lugiez, F.; Gevin, O.; Pinsard, F.; Le Mer, I.; Delagnes, E.; Vassal, M.C.; Soufflet, F.; Bocage, R. Caliste 64, an innovative CdTe hard X-ray micro-camera. IEEE Trans. Nucl. Sci. 2008, 55, 778–784. [Google Scholar] [CrossRef]
- Abbene, L.; Gerardi, G.; Turturici, A.A.; Del Sordo, S.; Principato, F. Experimental results from Al/p-CdTe/PtX-ray detectors. Nucl. Instr. Meth. A 2013, 730, 135–140. [Google Scholar] [CrossRef]
- Principato, F.; Turturici, A.A.; Gallo, M.; Abbene, L. Polarization phenomena in Al/p-CdTe/Pt X-ray detectors. Nucl. Instr. Meth. A 2013, 730, 141–145. [Google Scholar] [CrossRef]
- Principato, F.; Gerardi, G.; Abbene, L. Time-dependent current-voltage characteristics of Al/p-CdTe/Pt X-ray detectors. J. Appl. Phys. 2012, 112, 094506. [Google Scholar] [CrossRef]
- Farella, I.; Montagna, G.; Mancini, A.M.; Cola, A. Study on Instability Phenomena in CdTe Diode-Like Detectors. IEEE Trans. Nucl. Sci. 2009, 56, 1736–1742. [Google Scholar] [CrossRef]
- Abbene, L.; Gerardi, G.; Principato, F.; Bettelli, M.; Seller, P.; Veale, M.C.; Fox, O.; Sawhney, K.; Zambelli, N.; Benassi, G.; et al. Dual-polarity pulse processing and analysis for charge-loss correction in cadmium–zinc–telluride pixel detectors. J. Synchrotron Rad. 2018, 25, 1078–1092. [Google Scholar] [CrossRef] [PubMed]
- Buttacavoli, A.; Principato, F.; Gerardi, G.; Bettelli, M.; Sarzi Amadè, N.; Zappettini, A.; Seller, M.C.; Veale, O.; Fox, K.; Sawhney, K.; et al. Room-temperature performance of 3 mm-thick cadmium zinc telluride pixel detectors with sub-millimetre pixelization. J. Synchrotron Rad. 2020, 27, 1180–1189. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, J.L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Ullán, M.; Lozano, M.; Pellegrini, G.; Cabruja, E.; Martínez, R.; Chmeissani, M.; et al. Hard-X and gamma-ray imaging detector for astrophysics based on pixelated CdTe semiconductors. J. Inst. 2014, 11, C01011. [Google Scholar] [CrossRef]
- Knoll, G.F. (Ed.) Pulse shaping, counting, and timing. In Radiation Detection and Measurement, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 649–650. [Google Scholar]
- Goulding, F.S.; Landis, D.A. Ballistic deficit correction in semiconductor detector spectrometers. IEEE Trans. Nucl. Sci. 1988, 35, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Salathe, M.; Kihm, J.C. Optimized digital filtering techniques for radiation detection with HPGe detectors. Nucl. Instr. Meth. A 2016, 808, 150–155. [Google Scholar] [CrossRef] [Green Version]
- De Cesare, C.; Brambilla, A.; Ouvrier-Buffet, P.; Stanchina, S.; Rossetto, O.; Verger, L. An FPGA-based algorithm to correct the instability of high-resolution and high-flux X-ray spectroscopic imaging detectors. J. Inst. 2018, 13, P08022. [Google Scholar] [CrossRef]
- Brambilla, A.; Ouvrier-Buffet, P.; Gonon, G.; Rinkel, J.; Moulin, V.; Boudou, C.; Verger, L. Fast CdTe and CdZnTe semiconductor detector arrays for spectroscopic X-ray imaging. IEEE Trans. Nucl. Sci. 2013, 60, 408–415. [Google Scholar] [CrossRef]
- Brambilla, A.; Ouvrier-Buffet, P.; Rinkel, J.; Gonon, G.; Boudou, C.; Verger, L. CdTe linear pixel X-ray detector with enhanced spectrometric performance for high flux X-ray imaging. IEEE Trans. Nucl. Sci. 2012, 59, 1552–1558. [Google Scholar] [CrossRef]
- Abbene, L.; Principato, F.; Gerardi, G.; Buttacavoli, A.; Cascio, D.; Bettelli, M.; Amadè, N.S.; Seller, P.; Veale, M.C.; Fox, O.; et al. Room-Temperature X-ray response of cadmium-zinc-Telluride pixel detectors grown by the vertical Bridgman technique. J. Synchrotron Rad. 2020, 27, 319–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbene, L.; Gerardi, G.; Turturici, A.A.; Raso, G.; Benassi, G.; Bettelli, M.; Zambelli, N.; Zappettini, A.; Principato, F. X-ray response of CdZnTe detectors grown by the vertical Bridgman technique: Energy, temperature and high flux effects. Nucl. Instr. Meth. A 2016, 835, 1–12. [Google Scholar] [CrossRef]
- Benassi, G.; Nasi, L.; Bettelli, M.; Zambelli, N.; Calestani, D.; Zappettini, A. Strong mechanical adhesion of gold electroless contacts on CdZnTe deposited by alcoholic solutions. J. Inst. 2017, 12, P02018. [Google Scholar] [CrossRef]
- Auricchio, N.; Marchini, L.; Caroli, E.; Zappettini, A.; Abbene, L.; Honkimaki, V. Charge transport properties in CdZnTe detectors grown by the vertical Bridgman technique. J. Appl. Phys. 2011, 110, 124502. [Google Scholar] [CrossRef]
- Abbene, L.; Gerardi, G.; Raso, G.; Principato, F.; Zambelli, N.; Benassi, G.; Bettelli, M.; Zappettini, A. Development of new CdZnTe detectors for room-temperature high-flux radiation measurements. J. Synchrotron Rad. 2017, 24, 429–438. [Google Scholar] [CrossRef]
- Iniewski, K. CZT sensors for Computed Tomography: From crystal growth to image quality. J. Inst. 2016, 11, C12034. [Google Scholar] [CrossRef]
- Chen, H.; Awadalla, S.A.; Iniewski, K.; Lu, P.H.; Harris, F.; MacKenzie, J.; Hasanen, T.; Chen, W.; Redden, R.; Bindley, G.; et al. Characterization of large cadmium zinc telluride crystals grown by traveling heater method. J. Appl. Phys. 2008, 103, 014903. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Awadalla, S.A.; Mackenzie, J.; Redden, R.; Bindley, G.; Bolotnikov, A.E.; Camarda, G.S.; Carini, G.; James, R.B. Characterization of Traveling Heater Method (THM) Grown Cd0.9Zn0.1Te Crystals. IEEE Trans. Nucl. Sci. 2007, 54, 811–816. [Google Scholar] [CrossRef]
- Thomas, B.; Veale, M.C.; Wilson, M.D.; Seller, P.; Schneider, A.; Iniewski, K. Characterisation of Redlen high-flux CdZnTe. J. Inst. 2017, 12, C12045. [Google Scholar] [CrossRef]
- Veale, M.C.; Booker, P.; Cross, S.; Hart, M.D.; Jowitt, L.; Lipp, J.; Schneider, A.; Seller, P.; Wheater, R.M.; Wilson, M.D.; et al. Characterization of the Uniformity of High-Flux CdZnTe Material. Sensors 2020, 20, 2747. [Google Scholar] [CrossRef]
- Koch-Mehrin, K.A.L.; Bugby, S.L.; Lees, J.E.; Veale, M.C.; Wilson, M.D. Charge Sharing and Charge Loss in High-Flux Capable Pixelated CdZnTe Detectors. Sensors 2021, 21, 3260. [Google Scholar] [CrossRef] [PubMed]
- Buttacavoli, A.; Principato, F.; Gerardi, G.; Cascio, D.; Raso, G.; Bettelli, M.; Zappettini, A.; Seller, P.; Veale, M.C.; Abbene, L. Incomplete Charge Collection at Inter-Pixel Gap in Low-and High-Flux Cadmium Zinc Telluride Pixel Detectors. Sensors 2022, 22, 1441. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xiao, S.; Li, M.; Zhang, L.; Cao, Y.; Chen, Y. Further process of polarization within a pixellated CdZnTe detector under intense X-ray irradiation. Nucl. Instr. Meth. A 2013, 700, 75–80. [Google Scholar] [CrossRef]
- Sellin, P.J.; Prekas, G.; Franc, J.; Grill, R. Electric field distributions in CdZnTe due to reduced temperature and X-ray irradiation. Appl. Phys. Let. A 2010, 96, 133509. [Google Scholar] [CrossRef] [Green Version]
- Bale, D.S.; Szeles, C. Nature of polarization in wide-bandgap semiconductor detectors under high-flux irradiation: Application to semi-insulating Cd1−xZnxTe. Phys. Rev. B 2008, 77, 035205. [Google Scholar] [CrossRef] [Green Version]
- Veale, M.C.; Bell, S.J.; Jones, L.L.; Seller, P.; Wilson, M.D.; Allwork, C.; Cernik, R.C. An ASIC for the study of charge sharing effects in small pixel CdZnTe X-ray detectors. IEEE Trans. Nucl. Sci. 2011, 58, 2357–2362. [Google Scholar] [CrossRef]
- Abbene, L.; Principato, F.; Gerardi, G.; Bettelli, M.; Seller, P.; Veale, M.C.; Zappettini, A. Digital fast pulse shape and height analysis on cadmium–zinc–telluride arrays for high-flux energy-resolved X-ray imaging. J. Synchrotron Rad. 2018, 25, 257–271. [Google Scholar] [CrossRef]
- Abbene, L.; Gerardi, G.; Raso, G.; Basile, S.; Brai, M.; Principato, F. Energy resolution and throughput of a new real time digital pulse processing system for X-ray and gamma ray semiconductor detectors. J. Inst. 2013, 8, P07019. [Google Scholar] [CrossRef]
- Gerardi, G.; Abbene, L. A digital approach for real time high-rate high-resolution radiation measurements. Nucl. Instr. Meth. A 2014, 768, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Dambacher, M.; Zwerger, A.; Fauler, A.; Disch, C.; Stohlker, U.; Fiederle, M. Development of the gamma-ray analysis digital filter multi-channel analyzer (GMCA). Nucl. Instr. Meth. A 2011, 652, 445–449. [Google Scholar] [CrossRef]
- Jordanov, V.T.; Knoll, G.F.; Huber, A.C.; Pantazis, J.A. Digital techniques for real-time pulse shaping in radiation measurements. Nucl. Instr. Meth. A 1994, 353, 261–264. [Google Scholar] [CrossRef] [Green Version]
- Abbene, L.; Gerardi, G.; Principato, F.; Del Sordo, S.; Raso, G. Direct measurement of mammographic X-ray spectra with a digital CdTe detection system. Sensors 2012, 12, 8390–8404. [Google Scholar] [CrossRef] [PubMed]
- Principato, F.; Gerardi, G.; Turturici, A.A.; Raso, G.; Quartararo, M.; Pintacuda, F.; Abbene, L. The “livio scarsi” X-ray facility at university of palermo for device testing. In Proceedings of the European Conference on Radiation and its Effects on Components and Systems, RADECS, Moscow, Russia, 14–18 September 2015; p. 7365672. [Google Scholar]
- Bertuccio, G.; Pullia, A.; De Geronimo, G. Criteria of choice of the front-end transistor for low-noise preamplification of detector signals at sub-microsecond shaping times for X- and γ-ray spectroscopy. Nucl. Instr. Meth. A 1996, 380, 301–307. [Google Scholar] [CrossRef]
- Abbene, L.; Gerardi, G. High-rate dead-time corrections in a general purpose digital pulse processing system. J. Synchrotron Rad. 2015, 22, 1190–1201. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Shirono, J.; Araki, H.; Budden, B.; Cai, L.; Kawata, G.; Thompson, R. Modeling Photon Counting Detector Anode Street Impact on Detector Energy Response. IEEE Trans. Rad. Plas. Med. Sci. 2020, 5, 476–484. [Google Scholar] [CrossRef]
- Kim, J.K.; Anderson, S.E.; Kaye, W.; Zhang, F.; Zhu, Y.; Kaye, S.J.; He, Z. Charge sharing in common-grid pixelated CdZnTe detectors. Nucl. Instr. Meth. A 2011, 654, 233–243. [Google Scholar] [CrossRef]
- Bugby, S.L.; Koch-Mehrin, K.A.L.; Veale, M.C.; Wilson, M.D.; Lees, J.E. Energy-loss correction in charge sharing events for improved performance of pixellated compound semiconductors. Nucl. Instr. Meth. A 2019, 940, 142–151. [Google Scholar] [CrossRef]
- Kalemci, E.; Matteson, J.L. Investigation of charge sharing among electrode strips for a CdZnTe detector. Nucl. Instr. Meth. A 2002, 478, 527–537. [Google Scholar] [CrossRef] [Green Version]
- Gaskin, J.A.; Sharma, D.P.; Ramsey, B.D. Charge sharing and charge loss in a cadmium–zinc–telluride fine-pixel detector array. Nucl. Instr. Meth. A 2003, 505, 122–125. [Google Scholar] [CrossRef]
- Bolotnikov, A.E.; Cook, W.R.; Harrison, F.A.; Wong, A.S.; Schindler, S.M.; Eichelberger, A.C. Charge loss between contacts of CdZnTe pixel detectors. Nucl. Instr. Meth. A 1999, 432, 326–331. [Google Scholar] [CrossRef]
- Buttacavoli, A.; Gerardi, G.; Principato, F.; Mirabello, M.; Cascio, D.; Raso, G.; Bettelli, M.; Zappettini, A.; Seller, P.; Veale, M.C.; et al. Energy recovery of multiple charge sharing events in room temperature semiconductor pixel detectors. Sensors 2021, 21, 3669. [Google Scholar] [CrossRef] [PubMed]
- Pickford Scienti, O.L.P.; Bamber, J.C.; Darambara, D.G. Cdte based energy resolving, X-ray photon counting detector performance assessment: The effects of charge sharing correction algorithm choice. Sensors 2020, 20, 6093. [Google Scholar] [CrossRef] [PubMed]
- Vasylchenko, I.; Grill, R.; Belas, E.; Praus, P.; Musiienko, A. Charge sharing in (CdZn)te pixel detector characterized by laser-induced transient currents. Sensors 2020, 20, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
CZT Crystals | Mobility-Lifetime Products μτ (cm2/V) | Electrical Contacts |
---|---|---|
B-VB CZT (4.25 × 3.25 × 1 mm3) IMEM-CNR Parma (Parma, Italy) 1 due2lab s.r.l. (Scandiano, Italy) 1 | μeτe 0.6–0.7 × 10−3 μhτh not measured | gold (Au) electroless quasi-ohmic IMEM-CNR Parma (Italy) 1 due2lab s.r.l. (Italy) 1 |
HF-CZT (4.25 × 3.25 × 2 mm3) Redlen Technologies (Canada) 1 | μeτe 2–3 × 10−3 μhτh 1–2 × 10−4 | platinum (Pt) quasi-ohmic Redlen Technologies (Canada) 1 |
LF-CZT (4.25 × 3.25 × 3 mm3) Redlen Technologies (Canada) 1 | μeτe 1–3 × 10−2 μhτh 2–3 × 10−5 | gold (Au) electroless quasi-ohmic IMEM-CNR Parma (Italy) 1 due2lab s.r.l. (Italy) 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buttacavoli, A.; Principato, F.; Gerardi, G.; Bettelli, M.; Zappettini, A.; Seller, P.; Veale, M.C.; Zanettini, S.; Abbene, L. Ballistic Deficit Pulse Processing in Cadmium–Zinc–Telluride Pixel Detectors for High-Flux X-ray Measurements. Sensors 2022, 22, 3409. https://doi.org/10.3390/s22093409
Buttacavoli A, Principato F, Gerardi G, Bettelli M, Zappettini A, Seller P, Veale MC, Zanettini S, Abbene L. Ballistic Deficit Pulse Processing in Cadmium–Zinc–Telluride Pixel Detectors for High-Flux X-ray Measurements. Sensors. 2022; 22(9):3409. https://doi.org/10.3390/s22093409
Chicago/Turabian StyleButtacavoli, Antonino, Fabio Principato, Gaetano Gerardi, Manuele Bettelli, Andrea Zappettini, Paul Seller, Matthew C. Veale, Silvia Zanettini, and Leonardo Abbene. 2022. "Ballistic Deficit Pulse Processing in Cadmium–Zinc–Telluride Pixel Detectors for High-Flux X-ray Measurements" Sensors 22, no. 9: 3409. https://doi.org/10.3390/s22093409
APA StyleButtacavoli, A., Principato, F., Gerardi, G., Bettelli, M., Zappettini, A., Seller, P., Veale, M. C., Zanettini, S., & Abbene, L. (2022). Ballistic Deficit Pulse Processing in Cadmium–Zinc–Telluride Pixel Detectors for High-Flux X-ray Measurements. Sensors, 22(9), 3409. https://doi.org/10.3390/s22093409