Machine Learning Strategies for Low-Cost Insole-Based Prediction of Center of Gravity during Gait in Healthy Males
Abstract
:1. Introduction
2. Materials and Methods
2.1. Low-Cost Insole Prototype
2.2. Subjects and Experimental Protocols
2.3. CG Prediction Protocol
2.3.1. Input and Target Data Preprocessing
2.3.2. Gait Phase-Based Feature Engineering
2.3.3. Data Augmentation
2.3.4. Bi-LSTM Network Model
2.4. Comparative Study
2.5. Statistical Evaluation
3. Results
3.1. Sensor Calibration and Validation
3.2. Input Feature Selection
3.3. Prediction Performance of CG Trajectory
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hrysomallis, C. Relationship between balance ability, training and sports injury risk. Sports Med. 2007, 37, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Yiou, E.; Caderby, T.; Delafontaine, A.; Fourcade, P.; Honeine, J.L. Balance control during gait initiation: State-of-the-art and research perspectives. World J. Orthop. 2017, 8, 815. [Google Scholar] [CrossRef] [PubMed]
- Hsue, B.J.; Miller, F.; Su, F.C. The dynamic balance of the children with cerebral palsy and typical developing during gait. Part I: Spatial relationship between COM and COP trajectories. Gait Posture 2009, 29, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Lafond, D.; Duarte, M.; Prince, F. Comparison of three methods to estimate the center of mass during balance assessment. J. Biomech. 2004, 37, 1421–1426. [Google Scholar] [CrossRef]
- Lee, H.J.; Chou, L.S. Detection of gait instability using and center of pressure inclination the center of mass angles. Arch. Phys. Med. Rehabil. 2006, 87, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Corriveau, H.; Hebert, R.; Prince, F.; Raiche, M. Postural control in the elderly: An analysis of test-retest and interrater reliability of the COP-COM variable. Arch. Phys. Med. Rehabil. 2001, 82, 80–85. [Google Scholar] [CrossRef]
- Osoba, M.Y.; Rao, A.K.; Agrawal, S.K.; Lalwani, A.K. Balance and gait in the elderly: A contemporary review. Laryngoscope Investig. Otolaryngol. 2019, 4, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Shimada, H.; Obuchi, S.; Kamide, N.; Shiba, Y.; Okamoto, M.; Kakurai, S. Relationship with dynamic balance function during standing and walking. Am. J. Phys. Med. Rehabil. 2003, 82, 511–516. [Google Scholar] [CrossRef]
- Maki, B.E.; McIlroy, W.E. Postural control in the older adult. Clin. Geriatr. Med. 1996, 12, 635–658. [Google Scholar] [CrossRef]
- Gutierrez-Farewik, E.M.; Barone, Å.; Saraste, H. Comparison and evaluation of two common methods to measure center of mass displacement in three dimensions during gait. Hum. Mov. Sci. 2006, 25, 238–256. [Google Scholar] [CrossRef]
- Gard, S.A.; Miff, S.C.; Kuo, A.D. Comparison of kinematic and kinetic methods for computing the vertical motion of the body center of mass during walking. Hum. Mov. Sci. 2004, 22, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Fusca, M.; Perego, P.; Andreoni, G. Method for wearable kinematic gait analysis using a harmonic oscillator applied to the Center of Mass. J. Sens. 2018, 2018, 4548396. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Inoue, Y.; Shibata, K. A wearable force plate system for the continuous measurement of triaxial ground reaction force in biomechanical applications. Meas. Sci. Technol. 2010, 21, 085804. [Google Scholar] [CrossRef]
- Tao, W.; Liu, T.; Zheng, R.; Feng, H. Gait analysis using wearable sensors. Sensors 2012, 12, 2255–2283. [Google Scholar] [CrossRef] [PubMed]
- Prasanth, H.; Caban, M.; Keller, U.; Courtine, G.; Ijspeert, A.; Vallery, H.; Von Zitzewitz, J. Wearable sensor-based real-time gait detection: A systematic review. Sensors 2021, 21, 2727. [Google Scholar] [CrossRef]
- Germanotta, M.; Mileti, I.; Conforti, I.; Del Prete, Z.; Aprile, I.; Palermo, E. Estimation of human center of mass position through the inertial sensors-based methods in postural tasks: An accuracy evaluation. Sensors 2021, 21, 601. [Google Scholar] [CrossRef]
- Floor-Westerdijk, M.J.; Schepers, H.M.; Veltink, P.H.; van Asseldonk, E.H.; Buurke, J.H. Use of inertial sensors for ambulatory assessment of center-of-mass displacements during walking. IEEE Trans. Biomed. Eng. 2012, 59, 2080–2084. [Google Scholar] [CrossRef]
- Schepers, H.M.; Van Asseldonk, E.H.; Buurke, J.H.; Veltink, P.H. Ambulatory estimation of center of mass displacement during walking. IEEE Trans. Biomed. Eng. 2009, 56, 1189–1195. [Google Scholar] [CrossRef]
- Subramaniam, S.; Majumder, S.; Faisal, A.I.; Deen, M.J. Insole-Based Systems for Health Monitoring: Current Solutions and Research Challenges. Sensors 2022, 22, 438. [Google Scholar] [CrossRef]
- Rupérez, M.J.; Martín-Guerrero, J.D.; Monserrat, C.; Alcañiz, M. Artificial neural networks for predicting dorsal pressures on the foot surface while walking. Expert Syst. Appl. 2012, 39, 5349–5357. [Google Scholar] [CrossRef]
- Lin, F.; Wang, A.; Zhuang, Y.; Tomita, M.R.; Xu, W. Smart Insole: A wearable sensor device for unobtrusive gait monitoring in daily life. IEEE Trans. Ind. Inform. 2016, 12, 2281–2291. [Google Scholar] [CrossRef]
- Abdul Razak, A.H.; Zayegh, A.; Begg, R.K.; Wahab, Y. Foot plantar pressure measurement system: A review. Sensors 2012, 12, 9884–9912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lugade, V.; Lin, V.; Chou, L.S. Center of mass and base of support interaction during gait. Gait Posture 2011, 33, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Begg, R.; Kamruzzaman, J. Neural networks for detection and classification of walking pattern changes due to ageing. Australas. Phys. Eng. Sci. Med. 2006, 29, 188–195. [Google Scholar] [CrossRef]
- Krishnan, S.; Athavale, Y. Trends in biomedical signal feature extraction. Biomed. Signal Process. Control 2018, 43, 41–63. [Google Scholar] [CrossRef]
- Nweke, H.F.; Teh, Y.W.; Al-Garadi, M.A.; Alo, U.R. Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Expert Syst. Appl. 2018, 105, 233–261. [Google Scholar] [CrossRef]
- Kim, H.; Moon, H.; Ha, H.; Lee, J.; Yu, J.; Chae, S.; Mun, J.; Choi, A. Can a deep learning model estimate low back torque during a golf swing? Int. J. Biotechnol. Sports Eng. 2021, 2, 59–65. [Google Scholar]
- Choi, A.; Jung, H.; Mun, J.H. Single inertial sensor-based neural networks to estimate COM-COP inclination angle during walking. Sensors 2019, 19, 2974. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Shrestha, A.; Heidari, H.; Kernec, J.L.; Fioranelli, F. Bi-LSTM Network for Multimodel Continuous Human Activity Recognition and Fall Detection. IEEE Sens. J. 2020, 20, 1191–1201. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.A.; Park, S.J.; Jun, J.A.; Pyo, C.S.; Cho, K.H.; Lee, H.S.; Yu, J.H. Deep learning-based stroke disease prediction system using real-time bio signals. Sensors 2021, 21, 4269. [Google Scholar] [CrossRef]
- Mei, Q.; Gu, Y.; Xiang, L.; Yu, P.; Gao, Z.; Shim, V.; Fernandez, J. Foot shape and plantar pressure relationships in shod and barefoot populations. Biomech. Model. Mechanobiol. 2020, 19, 1211–1224. [Google Scholar] [CrossRef] [PubMed]
- Tahir, A.M.; Chowdhury, M.E.; Khandakar, A.; Al-Hamouz, S.; Abdalla, M.; Awadallah, S.; Reaz, M.B.I.; Al-Emadi, N. A systematic approach to the design and characterization of a smart insole for detecting vertical ground reaction force (vGRF) in gait analysis. Sensors 2020, 20, 957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, A.R.; Yun, T.S.; Lee, K.S.; Min, K.K.; Hwang, H.; Lee, K.Y.; Oh, E.C.; Mun, J.H. Asymmetric loading of erector spinae muscles during sagittally symmetric lifting. J. Mech. Sci. Technol. 2009, 23, 64–74. [Google Scholar] [CrossRef]
- Cramer, L.A.; Wimmer, M.A.; Malloy, P.; O’Keefe, J.A.; Knowlton, C.B.; Ferrigno, C. Validity and Reliability of the Insole3 Instrumented Shoe Insole for Ground Reaction Force Measurement during Walking and Running. Sensors 2022, 22, 2203. [Google Scholar] [CrossRef] [PubMed]
- Choi, A.; Yun, T.S.; Suh, S.W.; Yang, J.H.; Park, H.; Lee, S.; Roh, M.S.; Kang, T.G.; Mun, J.H. Determination of input variables for the development of a gait asymmetry expert system in patients with idiopathic scoliosis. Int. J. Precis. Eng. Manuf. 2013, 14, 811–818. [Google Scholar] [CrossRef]
- Sim, T.; Kwon, H.; Oh, S.E.; Joo, S.B.; Choi, A.; Heo, H.M.; Kim, K.; Mun, J.H. Predicting complete ground reaction forces and moments during gait with insole plantar pressure information using a wavelet neural network. J. Biomech. Eng. 2015, 137, 091001. [Google Scholar] [CrossRef]
- Russell, S.; Bennett, B.; Kerrigan, D.; Abel, M. Determinants of gait as applied to children with cerebral palsy. Gait Posture 2007, 26, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Sun, Y.; Sun, S. Improving human activity recognition performance by data fusion and feature engineering. Sensors 2021, 21, 692. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B. Influence of in-shoe heel lifts on plantar pressure and center of pressure in the medial–lateral direction during walking. Gait Posture 2014, 39, 1012–1016. [Google Scholar] [CrossRef]
- Shahabpoor, E.; Pavic, A. Measurement of walking ground reactions in real-life environments: A systematic review of techniques and technologies. Sensors 2017, 17, 2085. [Google Scholar] [CrossRef] [Green Version]
- Attal, F.; Amirat, Y.; Chibani, A.; Mohammed, S. Automatic Recognition of Gait phases Using a Multiple Regression Hidden Markov Model. IEEE/ASME Trans. Mechatron. 2018, 23, 1597–1607. [Google Scholar] [CrossRef]
- Ochoa-Diaz, C.; Padilha, L.B.A. Symmetry Analysis of Amputee Gait Based on Body Center of Mass Trajectory and Discrete Fourier Transform. Sensors 2020, 20, 2392. [Google Scholar] [CrossRef] [PubMed]
- Mian, O.S.; Thom, J.M.; Ardigò, L.P.; Narici, M.V.; Minetti, A.E. Metabolic cost, mechanical work, and efficiency during walking in young and older men. Acta Physiol. 2006, 186, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Johnny, D.F.; Natlie, B.; Edward, D.L. Gait phase detection from thigh kinematics using machine learning techniques. In Proceedings of the IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rochester, MN, USA, 7–10 May 2017; pp. 263–268. [Google Scholar]
- Khera, P.; Kumar, N. Role of machine learning in gait analysis: A review. J. Med. Eng. Technol. 2020, 44, 441–467. [Google Scholar] [CrossRef]
- Gao, S.; Ver Steeg, G.; Galstyan, A. Variational information maximization for feature selection. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 487–495. [Google Scholar]
- Um, T.T.; Pfister, F.M.J.; Pichler, D.; Endo, S.; Lang, M.; Hirche, S.; Fietzek, U.; Kulić, D. Data Augmentation of Wearable Sensor Data for Parkinson’s Disease Monitoring using Convolutional Neural Networks. In Proceedings of the 19th ACM International Conference on Multimodal Interaction, Glasgow, UK, 13–17 November 2017; ACM: New York, NY, USA, 2017; pp. 216–220. [Google Scholar]
- Oh, C.; Han, S.; Jeong, J. Time-series data augmentation based on interpolation. Procedia Comput. Sci. 2020, 175, 64–71. [Google Scholar] [CrossRef]
- Wen, Q.; Sun, L.; Yang, F.; Song, X.; Gao, J.; Wang, X.; Xu, H. Time series data augmentation for deep learning: A survey. arXiv 2020, arXiv:2002.12478. [Google Scholar]
- Charlier, J.; Nadon, R.; Makarenkov, V. Accurate deep learning off-target prediction with novel sgRNA-DNA sequence encoding in CRISPR-Cas9 gene editing. Bioinformatics 2021, 37, 2299–2307. [Google Scholar] [CrossRef]
- Pirbazari, A.M.; Chakravorty, A.; Rong, C. Evaluating Feature Selection Methods for Short-Term Load Forecasting. In Proceedings of the IEEE International Conference on Big Data and Smart Computing (BigComp), Kyoto, Japan, 27 February–2 March 2019; pp. 1–8. [Google Scholar]
- Fleron, M.K.; Ubbesen, N.C.H.; Battistella, F.; Dejtiar, D.L.; Oliveira, A.S. Accuracy between optical and inertial motion capture systems for assessing trunk speed during preferred gait and transition periods. Sports Biomech. 2018, 18, 366–377. [Google Scholar] [CrossRef]
- Tesio, L.; Rota, V. The motion of body center of mass during walking: A review oriented to clinical applications. Front. Neurol. 2019, 10, 999. [Google Scholar] [CrossRef]
- Ramanathan, A.; Kiran, P.; Arnold, G.; Wang, W.; Abboud, R. Repeatability of the Pedar-X® in-shoe pressure measuring system. Foot Ankle Surg. 2010, 16, 70–73. [Google Scholar] [CrossRef]
- Mun, F.; Choi, A. Deep learning approach to estimate foot pressure distribution in walking with application for a cost-effective insole system. J. NeuroEng. Rehabil. 2022, 19, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Marcus, G. Deep learning: A critical appraisal. arXiv 2018, arXiv:1801.00631. [Google Scholar]
- Ma, C.Y.; Chen, M.H.; Kira, Z.; AlRegib, G. TS-LSTM and temporal-inception: Exploiting spatiotemporal dynamics for activity recognition. Signal Process. Image Commun. 2019, 71, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Li, J.H.; Tian, L.; Wang, H.; An, Y.; Wang, K.; Yu, L. Segmentation and recognition of basic and transitional activities for continuous physical human activity. IEEE Access 2019, 7, 42565–42576. [Google Scholar] [CrossRef]
- Gefen, A.; Megido-Ravid, M.; Itzchak, Y.; Arcan, M. Biomechanical analysis of the three-dimensional foot structure during gait: A basic tool for clinical applications. J. Biomech. Eng. 2000, 122, 630–639. [Google Scholar] [CrossRef]
- Do Carmo, A.A.; Kleiner, A.F.R.; Barros, R.M. Alteration in the center of mass trajectory of patients after stroke. Top. Stroke Rehabil. 2015, 22, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Schrager, M.A.; Kelly, V.E.; Price, R.; Ferrucci, L.; Shumway-Cook, A. The effects of age on medio-lateral stability during normal and narrow base walking. Gait Posture 2008, 28, 466–471. [Google Scholar] [CrossRef] [Green Version]
- Chong, R.K.; Chastan, N.; Welter, M.L.; Do, M.C. Age-related changes in the center of mass velocity control during walking. Neurosci. Lett. 2009, 458, 23–27. [Google Scholar] [CrossRef]
- Aderinola, T.B.; Connie, T.; Ong, T.S.; Yau, W.C.; Teoh, A.B.J. Learning Age from Gait: A Survey. IEEE Access 2021, 9, 100352–100368. [Google Scholar] [CrossRef]
Phase | Description |
---|---|
Phase 1 | Max values about 6th sensor data of the left foot; Moving average about 6th sensor data of the left foot; Moving average about sum of total signals from the left foot; Max values about 7th sensor data of the left foot; Max values about sum of total signals from the left foot; Max values about front foot; signals of the left foot; Minimum values about 8th sensor data of the left foot; Minimum values about front foot; signals of the right foot; Minimum values about sum of total signals from the left foot; Minimum values about 7th sensor data of the left foot; |
Phase 2 | Max values about front foot; signals of the right foot; Max values about y-axis center of pressure of the right foot; Moving average about front foot; signals of the right foot; Max values about 8th sensor data of the right foot; Last data of a window from front foot; signals of the right foot; Max values about 7th sensor data of the right foot; Max values about x-axis center of pressure of the right foot; Moving average about 8th sensor data of the right foot; Last data of a window from x-axis center of pressure of the right foot; Max values about x-axis center of pressure of the right foot; Moving average about 1st sensor data of the right foot; Minimum values about rear foot; signals of the right foot; Minimum values about y-axis center of pressure of the right foot; |
Phase 3 | Moving average about sum of total signals from the right foot; Moving average about front foot; signals of the right foot; Max values about front foot; signals of the right foot; Max values about sum of total signals from the right foot; Minimum values about y-axis center of pressure of the left foot; Moving average about front foot; signals of the left foot; Moving average about 7th sensor data of the right foot; Moving average about 8th sensor data of the right foot; Moving average about y-axis center of pressure of the left foot; Minimum values about front foot; signals of the right foot; Last data of a window from front foot; signals of the right foot; Max values about 6th sensor data of the right foot; Max values about 7th sensor data of the right foot; Max values about 8th sensor data of the right foot; |
Phase 4 | Max values about x-axis center of pressure of the left foot; Max values about y-axis center of pressure of the left foot; Minimum values about x-axis center of pressure of the left foot; Moving average about x-axis center of pressure of the left foot; Last data of a window about x-axis center of pressure of the left foot; Max values about front foot; signals of the left foot; Last data of a window about y-axis center of pressure of the left foot; Moving average about 9th sensor data of the left foot; Max values about 7th sensor data of the left foot; Max values about 9th sensor data of the left foot; Moving average about y-axis center of pressure of the left foot; Minimum values about 7th sensor data of the left foot; Minimum values about y-axis center of pressure of the left foot; Moving average about 9th sensor data of the left foot; Last data of a window about y-axis center of pressure of the left foot; |
Age | Model Name | Correlation Coefficient | RMSE (mm) | rRMSE (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Anterior/ Posterior | Medial/ Lateral | Proximal/ Distal | Anterior/ Posterior | Medial/ Lateral | Proximal/ Distal | Anterior/ Posterior | Medial/ Lateral | Proximal/ Distal | ||
Young | Model 1 (None) | 0.99 (0.99–0.97) | 0.91 (0.95–0.71) | 0.92 (0.98–0.72) | 65.01 ± 3.10 | 11.97 ± 1.15 | 9.98 ± 0.59 | 5.37 ± 0.55 ** | 25.86 ± 2.16 ** | 22.03 ± 1.65 ** |
Model 2 (RFE) | 0.99 (0.99–0.98) | 0.89 (0.95–0.66) | 0.85 (0.96–0.07) | 62.11 ± 8.71 | 11.94 ± 1.55 | 11.49 ± 1.44 | 4.99 ± 0.69** | 22.71 ± 1.97 * | 26.14 ± 1.87 ** | |
Model 3 (MI) | 0.99 (0.99–0.99) | 0.86 (0.89–0.80) | 0.92 (0.96–0.72) | 33.91 ± 2.57 | 10.25 ± 1.02 | 8.96 ± 0.68 | 3.02 ± 0.20 | 19.90 ± 1.66 | 22.16 ± 1.43 ** | |
Model 4 (ELA) | 0.99 (0.99–0.99) | 0.87 (0.89–0.80) | 0.89 (0.97–0.65) | 37.65 ± 2.77 | 10.24 ± 0.99 | 9.38 ± 0.70 | 2.73 ± 0.20 | 19.52 ± 1.29 | 21.24 ± 1.23 ** | |
Proposed | 0.99 (0.99–0.99) | 0.92 (0.98–0.75) | 0.92 (0.98–0.60) | 26.73 ± 2.92 | 8.72 ± 1.68 | 6.12 ± 0.72 | 2.13 ± 0.21 | 14.24 ± 1.72 | 14.01 ± 1.09 | |
Old | Model 1 (None) | 0.99 (0.99–0.83) | 0.89 (0.98–0.80) | 0.85 (0.97–0.63) | 84.52 ± 12.93 | 15.03 ± 0.99 | 12.41 ± 0.74 | 7.12 ± 1.06 ** | 22.92 ± 1.76 * | 23.83 ± 1.44 ** |
Model 2 (RFE) | 0.99 (0.99–0.98) | 0.91 (0.99–0.64) | 0.89 (0.95–0.63) | 59.64 ± 5.14 | 5.78 ± 1.29 | 7.1 ± 0.73 | 4.87 ± 0.43 ** | 12.71 ± 2.98 | 16.14 ± 1.11 | |
Model 3 (MI) | 0.99 (0.99–0.98) | 0.92 (0.99–0.70) | 0.89 (0.98–0.71) | 55.03 ± 3.46 | 5.06 ± 1.10 | 6.53 ± 0.96 | 4.48 ± 0.28 * | 10.43 ± 2.41 | 14.37 ± 1.36 | |
Model 4 (ELA) | 0.99 (0.99–0.98) | 0.92(0.98–0.67) | 0.91 (0.98–0.59) | 47.77 ± 4.73 | 6.20 ± 1.08 | 6.62 ± 0.83 | 3.86 ± 0.36 | 12.72 ± 2.33 | 14.68 ± 1.28 | |
Proposed | 0.99 (0.99–0.99) | 0.96 (0.99–0.90) | 0.91 (0.97–0.79) | 25.86 ± 2.15 | 5.74 ± 1.08 | 5.39 ± 0.84 | 2.10 ± 0.17 | 11.70 ± 2.42 | 11.74 ± 1.27 |
CG Trajectory PV Range (mm) | |||
---|---|---|---|
Direction | Age | Test | Prediction |
Medial/lateral | Young | 45.25 ± 2.53 | 44.15 ± 2.64 |
Old | 64.32 ± 2.87 | 61.35 ± 4.34 | |
Proximal/distal | Young | 41.36 ± 2.11 | 40.09 ± 3.61 |
Old | 46.84 ± 2.72 | 45.22 ± 3.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, J.; Lee, D.; Jung, H.; Choi, A.; Mun, J.H. Machine Learning Strategies for Low-Cost Insole-Based Prediction of Center of Gravity during Gait in Healthy Males. Sensors 2022, 22, 3499. https://doi.org/10.3390/s22093499
Moon J, Lee D, Jung H, Choi A, Mun JH. Machine Learning Strategies for Low-Cost Insole-Based Prediction of Center of Gravity during Gait in Healthy Males. Sensors. 2022; 22(9):3499. https://doi.org/10.3390/s22093499
Chicago/Turabian StyleMoon, Jose, Dongjun Lee, Hyunwoo Jung, Ahnryul Choi, and Joung Hwan Mun. 2022. "Machine Learning Strategies for Low-Cost Insole-Based Prediction of Center of Gravity during Gait in Healthy Males" Sensors 22, no. 9: 3499. https://doi.org/10.3390/s22093499
APA StyleMoon, J., Lee, D., Jung, H., Choi, A., & Mun, J. H. (2022). Machine Learning Strategies for Low-Cost Insole-Based Prediction of Center of Gravity during Gait in Healthy Males. Sensors, 22(9), 3499. https://doi.org/10.3390/s22093499