The Usefulness of Assessing Heart Rate Variability in Patients with Acute Myocardial Infarction (HeaRt-V-AMI)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Objectives
2.2. Eligibility Criteria
- (1)
- Age ≥ 18 years;
- (2)
- Patients in sinus rhythm;
- (3)
- STEMI diagnosis referred for primary PCI within 12 h from symptoms onset;
- (4)
- Patients who agree to participate in the study and sign the informed consent.
- (1)
- Patients who are unable to sign the informed consent;
- (2)
- Atrioventricular block of any degree or sinus node dysfunction;
- (3)
- Atrial fibrillation;
- (4)
- Paced ventricular rhythm;
- (5)
- Frequent premature supraventricular or ventricular contractions;
- (6)
- Treatment with positive inotropic or chronotropic drugs;
- (7)
- History of myocardial infarction or myocardial revascularization (PCI or coronary artery bypass graft surgery—CABG);
- (8)
- Patients who refused to participate in the study.
2.3. HRV Parameters Measured
- (1)
- Time domain parameters: standard deviation of all NN intervals (SDNN), HRV triangular index, the standard deviation of the average NN interval over short time divisions (SDANN), and the square root of the mean squared differences of consecutive NN intervals (RMSSD);
- (2)
- Frequency domain parameters: low-frequency power (LF), high-frequency power (HF), and LF/HF ratio.
2.4. Collected Data
- Demographic data (age, sex);
- Time to primary PCI in relation to chest pain onset;
- Comorbidities (arterial hypertension, diabetes mellitus, chronic kidney disease, ischemic heart disease, stroke);
- Cardiovascular risk factors (advanced age, gender, high body mass index, smoking, sedentarism, inflammation);
- Cardiac rhythm; HRV parameters (time domain, frequency domain, and nonlinear measurements),
- Biological data (creatine kinase-MB—CK-MB, lactate dehydrogenase—LDH, aspartate transaminase—AST, cardiac-specific troponin, complete blood count, hemoglobin, hematocrit, glycemia, lipid profile, serum urea, and creatinine, estimated glomerular filtration rate using CKD-EPI equation, serum potassium, and sodium, C-reactive protein, N-terminal pro-b-type natriuretic peptide);
- Left ventricular ejection fraction (LVEF) evaluated at admission, pre-discharge, and during follow-up;
- Thrombolysis in myocardial infarction (TIMI) flow before and after primary PCI;
- Type of stent used for primary PCI;
- GRACE score;
- SYNTAX score II will be documented if three-vessel coronary disease or left main stem disease.
2.5. Outcomes and Follow-Up
2.6. Participation Timeline
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Khan, M.A.; Hashim, M.J.; Mustafa, H.; Baniyas, M.Y.; Al Suwaidi, S.K.B.M.; AlKatheeri, R.; Alblooshi, F.M.K.; Almatrooshi, M.E.A.H.; Alzaabi, M.E.H.; Al Darmaki, R.S.; et al. Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus 2020, 12, e9349. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-H.; Huang, S.-S.; Lin, S.-J. TIMI and GRACE Risk Scores Predict Both Short-Term and Long-Term Outcomes in Chinese Patients with Acute Myocardial Infarction. Acta Cardiol. Sin. 2018, 34, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Katz, A.; Liberty, I.F.; Porath, A.; Ovsyshcher, I.; Prystowsky, E.N. A simple bedside test of 1-minute heart rate variability during deep breathing as a prognostic index after myocardial infarction. Am. Heart J. 1999, 138, 32–38. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, Y.; Qiao, B.; Wang, Y.; Zhang, L.; Cui, T.; Fu, P. Heart Rate Variability and Prognosis in Hemodialysis Patients: A Meta-Analysis. Blood Purif. 2021, 50, 298–308. [Google Scholar] [CrossRef]
- Balanescu, S.; Corlan, A.D.; Dorobantu, M.; Gherasim, L. Prognostic value of heart rate variability after acute myocardial infarction. Med. Sci. Monit. 2004, 10, Cr307–Cr315. [Google Scholar]
- Malik, M. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Song, H.S.; Lehrer, P.M. The effects of specific respiratory rates on heart rate and heart rate variability. Appl. Psychophysiol. Biofeedback 2003, 28, 13–23. [Google Scholar] [CrossRef]
- Liu, H.; Allen, J.; Zheng, D.; Chen, F. Recent development of respiratory rate measurement technologies. Physiol. Meas. 2019, 40, 07tr01. [Google Scholar] [CrossRef] [Green Version]
- Li, H.-R.; Lu, T.-M.; Cheng, H.-M.; Lu, D.-Y.; Chiou, C.-W.; Chuang, S.-Y.; Yang, A.C.; Sung, S.-H.; Yu, W.-C.; Chen, C.-H. Additive Value of Heart Rate Variability in Predicting Obstructive Coronary Artery Disease beyond Framingham Risk. Circ. J. 2016, 80, 494–501. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compostella, L.; Lakusic, N.; Compostella, C.; Truong, L.V.S.; Iliceto, S.; Bellotto, F. Does heart rate variability correlate with long-term prognosis in myocardial infarction patients treated by early revascularization? World J. Cardiol. 2017, 9, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Schuurmans, A.A.T.; de Looff, P.; Nijhof, K.S.; Rosada, C.; Scholte, R.H.J.; Popma, A.; Otten, R. Validity of the Empatica E4 Wristband to Measure Heart Rate Variability (HRV) Parameters: A Comparison to Electrocardiography (ECG). J. Med. Syst. 2020, 44, 190. [Google Scholar] [CrossRef] [PubMed]
- Chorin, E.; Hochstadt, A.; Schwartz, A.L.; Matz, G.; Viskin, S.; Rosso, R. Continuous Heart Rate Monitoring for Automatic Detection of Life-Threatening Arrhythmias with Novel Bio-Sensing Technology. Front. Cardiovasc. Med. 2021, 8. [Google Scholar] [CrossRef]
- Singh, N.; Moneghetti, K.J.; Christle, J.W.; Hadley, D.; Froelicher, V.; Plews, D. Heart Rate Variability: An Old Metric with New Meaning in the Era of Using mHealth technologies for Health and Exercise Training Guidance. Part Two: Prognosis and Training. Arrhythm. Electrophysiol. Rev. 2018, 7, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Elm, E.v.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. Strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. BMJ 2007, 335, 806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Fourth Universal Definition of Myocardial Infarction (2018). Circulation 2018, 138, e618–e651. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Niskanen, J.P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV—Heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef]
- Laborde, S. Chapter 17—Bridging the Gap between Emotion and Cognition: An Overview. In Performance Psychology; Raab, M., Lobinger, B., Hoffmann, S., Pizzera, A., Laborde, S., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 275–289. [Google Scholar] [CrossRef]
- Chand, T.; Li, M.; Jamalabadi, H.; Wagner, G.; Lord, A.; Alizadeh, S.; Danyeli, L.V.; Herrmann, L.; Walter, M.; Sen, Z.D. Heart Rate Variability as an Index of Differential Brain Dynamics at Rest and After Acute Stress Induction. Front. Neurosci. 2020, 14. [Google Scholar] [CrossRef]
- Fournié, C.; Chouchou, F.; Dalleau, G.; Caderby, T.; Cabrera, Q.; Verkindt, C. Heart rate variability biofeedback in chronic disease management: A systematic review. Complementary Ther. Med. 2021, 60, 102750. [Google Scholar] [CrossRef]
- Burlacu, A.; Brinza, C.; Popa, I.V.; Covic, A.; Floria, M. Influencing Cardiovascular Outcomes through Heart Rate Variability Modulation: A Systematic Review. Diagnostics 2021, 11, 2198. [Google Scholar] [CrossRef]
- Watanabe, E.; Kiyono, K.; Yamamoto, Y.; Hayano, J. Heart Rate Variability and Cardiac Diseases. In Clinical Assessment of the Autonomic Nervous System; Iwase, S., Hayano, J., Orimo, S., Eds.; Springer: Tokyo, Japan, 2017; pp. 163–178. [Google Scholar] [CrossRef]
- Fang, S.-C.; Wu, Y.-L.; Tsai, P.-S. Heart Rate Variability and Risk of All-Cause Death and Cardiovascular Events in Patients with Cardiovascular Disease: A Meta-Analysis of Cohort Studies. Biol. Res. Nurs. 2019, 22, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, I.; Goldkorn, R.; Shlomo, N.; Einhorn, M.; Levitan, J.; Kuperstein, R.; Klempfner, R.; Johnson, B. Heart Rate Variability for Risk Assessment of Myocardial Ischemia in Patients without Known Coronary Artery Disease: The HRV-DETECT (Heart Rate Variability for the Detection of Myocardial Ischemia) Study. J. Am. Heart Assoc. 2019, 8, e014540. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, A.; Pantelopoulos, A.; Emir-Farinas, H.; Natarajan, P. Heart rate variability with photoplethysmography in 8 million individuals: A cross-sectional study. Lancet Digit. Health 2020, 2, e650–e657. [Google Scholar] [CrossRef]
- Abtan, J.; Bhatt, D.L.; Elbez, Y.; Sorbets, E.; Eagle, K.; Ikeda, Y.; Wu, D.; Hanson, M.E.; Hannachi, H.; Singhal, P.K.; et al. Residual Ischemic Risk and Its Determinants in Patients with Previous Myocardial Infarction and without Prior Stroke or TIA: Insights From the REACH Registry. Clin. Cardiol. 2016, 39, 670–677. [Google Scholar] [CrossRef] [PubMed]
Procedures/Timepoint | Study Interventions | ||||
---|---|---|---|---|---|
Enrollment | Baseline | During Hospital Stay | 1 Month | 12 Months | |
Enrollment | X | ||||
Screen for eligibility | X | ||||
Contact information | X | ||||
Informed consent | |||||
Interventions | |||||
Demographic data | X | ||||
Time to PCI | X | ||||
Comorbidities | X | ||||
Cardiovascular risk factors | X | ||||
Blood collection | X | ||||
Echocardiography | X | X | X | X | |
Angiographic data | X | ||||
ECG | X | X | X | X | |
HRV measurement | X | X | X | ||
Assessments | |||||
Clinical data | X | X | X | X | |
Primary composite outcome | X | X | X | ||
Secondary outcomes | X | X | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brinza, C.; Floria, M.; Covic, A.; Covic, A.; Scripcariu, D.-V.; Burlacu, A. The Usefulness of Assessing Heart Rate Variability in Patients with Acute Myocardial Infarction (HeaRt-V-AMI). Sensors 2022, 22, 3571. https://doi.org/10.3390/s22093571
Brinza C, Floria M, Covic A, Covic A, Scripcariu D-V, Burlacu A. The Usefulness of Assessing Heart Rate Variability in Patients with Acute Myocardial Infarction (HeaRt-V-AMI). Sensors. 2022; 22(9):3571. https://doi.org/10.3390/s22093571
Chicago/Turabian StyleBrinza, Crischentian, Mariana Floria, Adrian Covic, Andreea Covic, Dragos-Viorel Scripcariu, and Alexandru Burlacu. 2022. "The Usefulness of Assessing Heart Rate Variability in Patients with Acute Myocardial Infarction (HeaRt-V-AMI)" Sensors 22, no. 9: 3571. https://doi.org/10.3390/s22093571
APA StyleBrinza, C., Floria, M., Covic, A., Covic, A., Scripcariu, D. -V., & Burlacu, A. (2022). The Usefulness of Assessing Heart Rate Variability in Patients with Acute Myocardial Infarction (HeaRt-V-AMI). Sensors, 22(9), 3571. https://doi.org/10.3390/s22093571