Data Valuation Algorithm for Inertial Measurement Unit-Based Human Activity Recognition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proposed Algorithm
2.1.1. Structure of the Proposed Data Valuation Algorithm
2.1.2. Structure for IMU-Based HAR in Proposed Data Valuation Algorithm
2.2. Evaluation Datasets
2.2.1. BBS HAR Data
2.2.2. UCI-HAR
2.2.3. WISDM
2.2.4. PAMAP2
2.3. Training and Evaluation Method
Algorithm 1 Pseudo-code of data valuation training |
Update the DVE model: |
Update the baseline: |
3. Results and Discussion
3.1. Evaluation of the Proposed Algorithm on BBS HAR Data
3.2. Evaluation of the Proposed Algorithm on BBS HAR Data
3.3. Evaluation of the Proposed Algorithm on Public HAR Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bayoudh, K.; Knani, R.; Hamdaoui, F.; Mtibaa, A. A survey on deep multimodal learning for computer vision: Advances, trends, applications, and datasets. Vis. Comput. 2022, 38, 2939–2970. [Google Scholar] [CrossRef] [PubMed]
- Latif, S.; Cuayáhuitl, H.; Pervez, F.; Shamshad, F.; Ali, H.S.; Cambria, E. A survey on deep reinforcement learning for audio-based applications. Artif. Intell. Rev. 2022, 1–48. [Google Scholar] [CrossRef]
- Lauriola, I.; Lavelli, A.; Aiolli, F. An introduction to deep learning in natural language processing: Models, techniques, and tools. Neurocomputing 2022, 470, 443–456. [Google Scholar] [CrossRef]
- Li, Y.; Huang, C.; Ding, L.; Li, Z.; Pan, Y.; Gao, X. Deep learning in bioinformatics: Introduction, application, and perspective in the big data era. Methods 2019, 166, 4–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Li, M.; Liu, L.; Li, Y.; Wang, J. Clinical big data and deep learning: Applications, challenges, and future outlooks. Big Data Min. Anal. 2019, 2, 288–305. [Google Scholar] [CrossRef] [Green Version]
- Tariq, M.I.; Tayyaba, S.; Ashraf, M.W.; Balas, V.E. Deep learning techniques for optimizing medical big data. In Deep Learning Techniques for Biomedical and Health Informatics; Elsevier: Amsterdam, The Netherlands, 2020; pp. 187–211. [Google Scholar]
- Dang, H.V.; Tran-Ngoc, H.; Nguyen, T.V.; Bui-Tien, T.; De Roeck, G.; Nguyen, H.X. Data-driven structural health monitoring using feature fusion and hybrid deep learning. IEEE Trans. Autom. Sci. Eng. 2020, 18, 2087–2103. [Google Scholar] [CrossRef]
- Rueckert, D.; Schnabel, J.A. Model-based and data-driven strategies in medical image computing. Proc. IEEE 2019, 108, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Gao, Z. Data-driven deep learning to design pilot and channel estimator for massive MIMO. IEEE Trans. Veh. Technol. 2020, 69, 5677–5682. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Kim, Y.; Kim, C.O. A deep learning model for robust wafer fault monitoring with sensor measurement noise. IEEE Trans. Semicond. Manuf. 2016, 30, 23–31. [Google Scholar] [CrossRef]
- Siamwala, A.; Lochhead, Z.; Abdulla, W. Environmental noise monitoring using distributed IoT sensor nodes. In Proceedings of the International Conference on Electronics, Information, and Communication (ICEIC), Auckland, New Zealand, 22–25 January 2019; IEEE: New York, NY, USA, 2019; pp. 1–10. [Google Scholar]
- Xia, S.; Chen, B.; Wang, G.; Zheng, Y.; Gao, X.; Giem, E.; Chen, Z. mCRF and mRD: Two classification methods based on a novel multiclass label noise filtering learning framework. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 2916–2930. [Google Scholar] [CrossRef]
- Sun, L.; Wang, T.; Ding, W.; Xu, J.; Lin, Y. Feature selection using Fisher score and multilabel neighborhood rough sets for multilabel classification. Inf. Sci. 2021, 578, 887–912. [Google Scholar] [CrossRef]
- Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding deep learning requires rethinking generalization. In Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 24–26 April 2017. [Google Scholar]
- Xiao, T.; Xia, T.; Yang, Y.; Huang, C.; Wang, X. Learning from massive noisy labeled data for image classification. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; IEEE: New York, NY, USA, 2015; pp. 2691–2699. [Google Scholar]
- Li, S.Y.; Huang, S.J.; Chen, S. Crowdsourcing aggregation with deep Bayesian learning. Sci. China Inf. Sci. 2021, 64, 11. [Google Scholar] [CrossRef]
- Zhu, X.; Wu, X. Class noise vs. attribute noise: A quantitative study. Artif. Intell. Rev. 2004, 22, 177–210. [Google Scholar] [CrossRef]
- Peng, X.; Wang, P.; Xia, S.; Wang, C.; Chen, W. VPGB: A granular-ball based model for attribute reduction and classification with label noise. Inf. Sci. 2022, 611, 504–521. [Google Scholar]
- Lu, Y.; Bo, Y.; He, W. An Ensemble model for combating label noise. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, Virtual Event, AZ, USA, 21–25 February 2022; ACM: New York, NY, USA, 2022; pp. 608–617. [Google Scholar]
- Kuang, M.; Wang, W.; Chen, Z.; Kang, L.; Yan, Q. Efficient two-stage label noise reduction for retrieval-based tasks. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, Virtual Event, AZ, USA, 21–25 February 2022; ACM: New York, NY, USA, 2022; pp. 526–534. [Google Scholar]
- Liu, Y.; Yao, R.; Jia, S.; Wang, F.; Wang, R.; Ma, R.; Qi, L. A label noise filtering and label missing supplement framework based on game theory. Digit. Commun. Netw. 2022, in press. [Google Scholar] [CrossRef]
- Shapley, L.S. A value for n-person games. Contrib. Theory Games 1953, 2, 307–317. [Google Scholar]
- Ju, L.; Wang, X.; Wang, L.; Mahapatra, D.; Zhao, X.; Zhou, Q.; Liu, T.; Ge, Z. Improving Medical Images Classification with Label Noise Using Dual-Uncertainty Estimation. IEEE Trans. Med. Imaging 2022, 41, 1533–1546. [Google Scholar] [CrossRef]
- Shapiro, A. Monte Carlo sampling methods. In Handbooks in Operations Research and Management Science; Elsevier: Amsterdam, The Netherlands, 2003; Volume 10, pp. 353–425. [Google Scholar]
- Cook, R.D. Detection of influential observation in linear regression. Technometrics 1977, 19, 15–18. [Google Scholar]
- Ghorbani, A.; Zou, J. Data shapley: Equitable valuation of data for machine learning. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 2242–2251. [Google Scholar]
- Ren, M.; Zeng, W.; Yang, B.; Urtasun, R. Learning to reweight examples for robust deep learning. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; PMLR; pp. 4334–4343. [Google Scholar]
- Hendrycks, D.; Mazeika, M.; Wilson, D.; Gimpel, K. Using trusted data to train deep networks on labels corrupted by severe noise. In Proceedings of the Advances in Neural Information Processing Systems 2018, Montreal, QC, Canada, 3–8 December 2018; p. 31. [Google Scholar]
- Saeed, S.U.; Fu, Y.; Stavrinides, V.; Baum, Z.M.; Yang, Q.; Rusu, M.; Fan, R.E.; Sonn, G.A.; Noble, J.A.; Barratt, D.C.; et al. Image quality assessment for machine learning tasks using meta-reinforcement learning. Med. Image Anal. 2022, 78, 102427. [Google Scholar]
- Yoon, J.; Arik, S.; Pfister, T. Data valuation using reinforcement learning. In Proceedings of the International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 10842–10851. [Google Scholar]
- Mekruksavanich, S.; Jitpattanakul, A. Smartwatch-based human activity recognition using hybrid lstm network. In Proceedings of the 2020 IEEE Sensors, Virtual, 25–28 October 2020; IEEE: New York, NY, USA, 2020; pp. 1–4. [Google Scholar]
- Mukherjee, D.; Mondal, R.; Singh, P.K.; Sarkar, R.; Bhattacharjee, D. EnsemConvNet: A deep learning approach for human activity recognition using smartphone sensors for healthcare applications. Multimed. Tools Appl. 2020, 79, 31663–31690. [Google Scholar] [CrossRef]
- Ordóñez, F.J.; Roggen, D. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors 2016, 16, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; NIPS: Long Beach, CA, USA, 2018; p. 30. [Google Scholar]
- Kim, Y.W.; Joa, K.L.; Jeong, H.Y.; Lee, S. Wearable IMU-based human activity recognition algorithm for clinical balance assessment using 1D-CNN and GRU ensemble model. Sensors 2021, 21, 7628. [Google Scholar] [CrossRef] [PubMed]
- Gholamrezaii, M.; AlModarresi, S.M.T. A time-efficient convolutional neural network model in human activity recognition. Multimed. Tools Appl. 2021, 80, 19361–19376. [Google Scholar] [CrossRef]
- Kim, Y.W.; Cho, W.H.; Kim, K.S.; Lee, S. Oversampling technique-based data augmentation and 1D-CNN and bidirectional GRU ensemble model for human activity recognition. J. Mech. Med. Biol. 2022, 22, 2240048. [Google Scholar] [CrossRef]
- Banjarey, K.; Sahu, S.P.; Dewangan, D.K. Human activity recognition using 1D convolutional neural network. In Sentimental Analysis and Deep Learning; Springer: Singapore, Singapore, 2022; pp. 691–702. [Google Scholar]
- Berg, K.; Wood-Dauphine, S.; Williams, J.I.; Gayton, D. Measuring balance in the elderly: Preliminary development of an instrument. Physiother. Can. 1989, 41, 304–311. [Google Scholar] [CrossRef]
- Berg, K.; Wood-Dauphinee, S.; Williams, J.I. The Balance Scale: Reliability assessment with elderly residents and patients with an acute stroke. Scand. J. Rehabil. Med. 1995, 27, 27–36. [Google Scholar]
- Elliott, J. The clinical uses of the Berg Balance Scale. Physiotherapy 1997, 7, 363. [Google Scholar] [CrossRef]
- Anguita, D.; Ghio, A.; Oneto, L.; Parra Perez, X.; Reyes Ortiz, J.L. A public domain dataset for human activity recognition using smartphones. In Proceedings of the 21th international European symposium on artificial neural networks, computational intelligence and machine learning, Bruges, Belgium, 24–26 April 2013; pp. 437–442. [Google Scholar]
- Kwapisz, J.R.; Weiss, G.M.; Moore, S.A. Activity recognition using cell phone accelerometers. ACM SigKDD Explor. Newsl. 2011, 12, 74–82. [Google Scholar] [CrossRef]
- Reiss, A.; Stricker, D. Introducing a new benchmarked dataset for activity monitoring. In Proceedings of the 2012 16th International Symposium on Wearable Computers, Newcastle, UK, 18–22 June 2012; IEEE: New York, NY, USA, 2012; pp. 108–109. [Google Scholar]
- Kim, Y.W.; Cho, W.H.; Kim, K.S.; Lee, S. Inertial-Measurement-Unit-Based Novel Human Activity Recognition Algorithm Using Conformer. Sensors 2022, 22, 3932. [Google Scholar] [CrossRef]
Task | Major Figures of RHLVS (%) | Major Figures of CSD (%) | |||
---|---|---|---|---|---|
Maximum Accuracy | Improved Accuracy | Removed Data | Maximum Discovery | Removed Data | |
1 | 99.4 | 5.5 | 30 | 100 | 25 |
2 | 99.4 | 6.1 | 45 | 100 | 25 |
3 | 99.7 | 3.6 | 25 | 100 | 25 |
4 | 98.2 | 2.1 | 25 | 100 | 25 |
5 | 99.4 | 5.5 | 30 | 98.9 | 40 |
6 | 99.4 | 3.9 | 25 | 100 | 25 |
7 | 100 | 8.2 | 25 | 100 | 25 |
8 | 98.5 | 5.8 | 30 | 100 | 25 |
9 | 99.4 | 3.3 | 25 | 100 | 25 |
10 | 99.4 | 5.8 | 35 | 100 | 25 |
11 | 100 | 10 | 40 | 100 | 20 |
12 | 97.9 | 8.5 | 30 | 98.9 | 25 |
13 | 99.1 | 6.1 | 25 | 100 | 20 |
14 | 100 | 7.9 | 25 | 100 | 20 |
Average | 99.3 | 5.9 | 29.5 | 99.8 | 25 |
Task | Accuracy (%) | Amount of Training Data (%) | ||
---|---|---|---|---|
Previous Study [35] | This Study | Previous Study [35] | This Study | |
1 | 98.5 | 99.4 | 90 | 30.8 |
2 | 98.5 | 99.4 | 90 | 24.2 |
3 | 99.6 | 99.7 | 90 | 33 |
4 | 99 | 98.2 | 90 | 33 |
5 | 96.7 | 99.4 | 90 | 30.8 |
6 | 97.9 | 99.4 | 90 | 33 |
7 | 99 | 100 | 90 | 33 |
8 | 98.9 | 98.5 | 90 | 30.8 |
9 | 97.8 | 99.4 | 90 | 33 |
10 | 98.2 | 99.4 | 90 | 28.6 |
11 | 97.8 | 100 | 90 | 26.4 |
12 | 98.2 | 97.9 | 90 | 30.8 |
13 | 98.1 | 99.1 | 90 | 33 |
14 | 99.1 | 100 | 90 | 33 |
Average | 98.4 | 99.3 | 90 | 31 |
Data | Major Metrics of RHLVS Baseline Model for Public HAR Data (%) | Major Metrics of RHLVS Complex Model for Public HAR Data (%) | Major Metrics of CSD (%) | |||||
---|---|---|---|---|---|---|---|---|
Maximum Accuracy | Improved Accuracy | Removed Data | Maximum Accuracy | Improved Accuracy | Removed Data | Maximum Discovery | Removed Data | |
UCI-HAR | 94.8 | 5 | 20 | 96.0 | 0.4 | 20 | 99.9 | 35 |
WISDM | 94.7 | 3.5 | 30 | 96.8 | 0.6 | 30 | 96.1 | 50 |
PAMAP2 | 96.0 | 3.1 | 30 | 96.8 | 1.9 | 35 | 96.6 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-W.; Lee, S. Data Valuation Algorithm for Inertial Measurement Unit-Based Human Activity Recognition. Sensors 2023, 23, 184. https://doi.org/10.3390/s23010184
Kim Y-W, Lee S. Data Valuation Algorithm for Inertial Measurement Unit-Based Human Activity Recognition. Sensors. 2023; 23(1):184. https://doi.org/10.3390/s23010184
Chicago/Turabian StyleKim, Yeon-Wook, and Sangmin Lee. 2023. "Data Valuation Algorithm for Inertial Measurement Unit-Based Human Activity Recognition" Sensors 23, no. 1: 184. https://doi.org/10.3390/s23010184
APA StyleKim, Y. -W., & Lee, S. (2023). Data Valuation Algorithm for Inertial Measurement Unit-Based Human Activity Recognition. Sensors, 23(1), 184. https://doi.org/10.3390/s23010184