Accelerometers in Our Pocket: Does Smartphone Accelerometer Technology Provide Accurate Data?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Instruments
2.3. Procedure
2.4. Data Processing and Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Inferential Statistics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jenkins, H. Convergence Culture: Where Old and New Media Collide; New York University Press: New York, NY, USA, 2006. [Google Scholar]
- Miller, G. The smartphone psychology manifesto. Perspect. Psychol. Sci. 2012, 7, 221–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, Y.; Nasseri, N.; Pöttgen, J.; Gezhelbash, E.; Heesen, C.; Stellmann, J. Smartphone accelerometry: A smart and reliable measurement of real-life physical activity in multiple sclerosis and healthy individuals. Front. Neurol. 2020, 11, 688. [Google Scholar] [CrossRef] [PubMed]
- Culhan, K.; O’Connor, M.; Lyons, D.; Lyons, G. Accelerometers in rehabilitation medicine for older adults. Age Ageing 2005, 34, 556–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinrungrueng, J.; Sartsatit, S.; Intarapanich, A. My act: An automatic detection of daily physical activity and calorie expenditure using smart phones. J. Assist. Rehabil. Ther. Technol. 2014, 2, 23187. [Google Scholar] [CrossRef] [Green Version]
- Althoff, T.; Jindal, P.; Leskovec, J. Online actions with offline impact: How online social networks influence online and offline user behavior. In Proceedings of the 10th ACM International Conference on Web Search and Data Mining, Cambridge, UK, 6–10 February 2017; pp. 537–546. [Google Scholar]
- Tamura, K.; Wilson, J.; Goldfeld, K.; Puett, R.; Klenosky, D.; Harper, W.; Troped, P. Accelerometer and GPS data to analyze built environments and physical activity. Res. Q. Exerc. Sport 2019, 90, 395–402. [Google Scholar] [CrossRef]
- Shafique, M.; Hato, E. Use of acceleration data for transportation mode prediction. Transportation 2014, 42, 163–188. [Google Scholar] [CrossRef] [Green Version]
- Dzeng, R.; Fang, Y.; Chen, I. A feasibility study of using smartphone built-in accelerometers to detect fall portents. Autom. Constr. 2014, 38, 74–86. [Google Scholar] [CrossRef]
- Lane, N.; Miluzzo, E.; Lu, H.; Peebles, D.; Choudhury, T.; Campbell, A. A survey of mobile phone sensing. IEEE Commun. Mag. 2010, 48, 140–150. [Google Scholar] [CrossRef]
- Cañete, J.; Yurish, S.Y. Sensors Systems for smartphones, tablets and IoT: New advanced design approach. Sens. Transducers 2015, 187, 1. [Google Scholar]
- Hyla, T.; Kazimierski, W.; Wawrzyniak, N. Analysis of radar integration possibilities in inland mobile navigation. In Proceedings of the 16th International Radar Symposium, Daytona Beach Shores, FL, USA, 8–10 January 2015; pp. 864–869. [Google Scholar]
- Stisen, A.; Blunck, H.; Bhattacharya, S.; Prentow, T.S.; Kjærgaard, M.B.; Dey, A.; Jensen, M.M. Smart devices are different: Assessing and mitigatin gmobile sensing heterogeneities for activity recognition. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems, Seoul, Republic of Korea, 23 November 2015; pp. 127–140. [Google Scholar]
- Mohammed, Z.; Elfadel, I.; Rasras, M. Monolithic multi degree of freedom (MDoF) capacitive MEMS accelerometers. Micromachines 2018, 9, 602. [Google Scholar] [CrossRef] [Green Version]
- Nishiguchi, S.; Yamada, M.; Nagai, K.; Mori, S.; Kajiwara, Y.; Sonoda, T.; Yoshitomi, H. Reliability and validity of gait analysis by android-based smartphone. Telemed. E-Health 2012, 18, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Cheng, Q.; Zhang, C. Detecting travel modes from smartphone-based travel surveys with continuous hidden Markov models. Int. J. Distrib. Sens. Netw. 2019, 15, 155014771984415. [Google Scholar] [CrossRef]
- O’Donnell, D.; Srbinovsky, B.; Murphy, J.; Popovici, E.; Pakrashi, V. Sensor measurement strategies for monitoring offshore wind and wave energy devices. J. Phys. Conf. Ser. 2015, 628, 012117. [Google Scholar] [CrossRef] [Green Version]
- Kronbauer, A.H.; Santos, C.A.S.; Vieira, V. Smartphone applications usability evaluation: A hybrid model and its implementation. In Proceedings of the 4th International Conference on Human-Centered Software Engineering, Toulouse, France, 29–31 October 2012; pp. 146–163. [Google Scholar]
- Douangphachanh, V.; Oneyama, H. Estimation of road roughness condition from smartphones under realistic settings. In Proceedings of the 13th International Conference on ITS Telecommunications, Tampere, Finland, 5–7 November 2013; pp. 433–439. [Google Scholar]
- Dey, S.; Roy, N.; Xu, W.; Choudhury, R.R.; Nelakuditi, S. AccelPrint: Imperfections of accelerometers make smartphones trackable. In Proceedings of the Network and Distributed System Security Symposium, San Diego, CA, USA, 23–26 February 2014; pp. 23–26. [Google Scholar]
- Douangphachanh, V.; Oneyama, H. Exploring the use of smartphone accelerometer and gyroscope to study on the estimation of road surface roughness conditions. In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics, Vienna, Austria, 1–3 September 2014; pp. 783–787. [Google Scholar]
- Feng, M.; Fukuda, Y.; Mizuta, M.; Ozer, E. Citizen Sensors for SHM: Use of Accelerometer data from smartphones. Sensors 2015, 15, 2980–2998. [Google Scholar] [CrossRef] [Green Version]
- Mourcou, Q.; Fleury, A.; Franco, C.; Klopcic, F.; Vuillerme, N. Performance evaluation of smartphone inertial sensors measurement for range of motion. Sensors 2015, 15, 23168–23187. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, I.N.; Leal, C.; Pinto, L.; Bolito, J.; Lemos, A. Exploring smartphone sensors for fall detection. mUX J. Mob. User Exp. 2016, 5, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kos, A.; Tomažič, S.; Umek, A. Evaluation of smartphone inertial sensor performance for cross-platform mobile applications. Sensors 2016, 16, 477. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.H.; Hsu, Y.W.; Yang, J.J.; Jaw, F.S. Evaluating the specifications of built-in accelerometers in smartphones on fall detection performance. Instrum. Sci. Technol. 2018, 46, 194–206. [Google Scholar] [CrossRef]
- Kask, T.; Kuusik, A. Performance comparison of smartphones and a wearable motion sensor for patient m-assessment. In Proceedings of the 16th Biennial Baltic Electronics Conference, Tallinn, Estonia, 8–10 October 2018; pp. 1–4. [Google Scholar]
- Ahmed, H.U.; Hu, L.; Yang, X.; Bridgelall, R.; Huang, Y. Effects of smartphone sensor variability in road roughness evaluation. Int. J. Pavement Eng. 2021, 23, 4404–4409. [Google Scholar] [CrossRef]
- Kuhlmann, T.; Garaizar, P.; Reips, U.D. Smartphone sensor accuracy varies from device to device in mobile research: The case of spatial orientation. Behav. Res. Methods 2021, 53, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Hu, L.; Ahmed, H.U.; Bridgelall, R.; Huang, Y. Calibration of smartphone sensors to evaluate the ride quality of paved and unpaved roads. Int. J. Pavement Eng. 2022, 23, 1529–1539. [Google Scholar] [CrossRef]
- Esteves, Y.R.; Concejero, J.B.; Jiménez, A.V. Indoor localization of the points of interest using ro-slam. In Proceedings of the 12th International Joint Conference on e-Business and Telecommunications, Colmar, Alsace, 20–22 July 2015; pp. 35–42. [Google Scholar]
- Saggio, G.; Tombolini, F.; Ruggiero, A. Technology-based complex motor tasks assessment: A 6-DOF Inertial-based system versus a gold-standard optoelectronic-based one. IEEE Sens. J. 2021, 21, 1616–1624. [Google Scholar] [CrossRef]
- Ounpuu, S.; Davis, R.B.; Deluca, P.A. Joint kinetics: Methods, interpretation and treatment decision-making in children with cerebral palsy and myelomeningocele. Gait Post. 1996, 4, 62–78. [Google Scholar] [CrossRef]
- Mathur, A.; Zhang, T.; Bhattachary, S.; Velickovic, P.; Joffe, L.; Lane, N.D.; Lió, P. Using deep data augmentation training to address software and hardware heterogeneities in wearable and smartphone sensing devices. In Proceedings of the 17th ACM/IEEE International Conference on Information Processing in Sensor Networks, Porto, Portugal, 11–13 April 2018; pp. 200–211. [Google Scholar]
- Micucci, D.; Mobili, M.; Napoletano, P.; Tisato, F. Falls as anomalies? An experimental evaluation using smartphone accelerometer data. J. Ambient Intell. Humaniz. Comput. 2017, 8, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xu, C.; Li, H.; Rathore, A.S.; Song, C.; Yan, Z.; Xu, W. Pdmove: Towards passive medication adherence monitoring of parkin’on’s disease using smartphone-based gait assessment. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 1–23. [Google Scholar] [CrossRef]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Del Rosario, M.B.; Redmond, S.J.; Lovell, N.H. Tracking the evolution of smartphone sensing for monitoring human movement. Sensors 2015, 15, 18901–18933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorton, G.E., III; Hebert, D.A.; Gannotti, M.E. Assessment of the kinematic variability among 12 motion analysis laboratories. Gait Posture 2009, 29, 398–402. [Google Scholar] [CrossRef]
- Ceseracciu, E.; Sawacha, Z.; Cobelli, C. Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: Proof of concept. PLoS ONE 2014, 9, e87640. [Google Scholar] [CrossRef]
Property | Smartphone 1 | Smartphone 2 | Smartphone 3 |
---|---|---|---|
Sensor maker | Bosch Sensortec | STMicroelectronics | STMicroelectronics |
Sensor Model | BMI260 | LSM6DSL | LSM6DSM |
Phone Maker, model | iPhone 12 Pro Max, 5G, IOS 14 | Samsung Galaxy S21 Ultra, 5G, Android 11 | Huawei P Smart, 5G, Android 10 |
Type | MEMS | MEMS | MEMS |
Sensitivity error | ±0.4% | ±0.4% | ±0.4% |
Acceleration Range | ±2/±4/±8/±16 g | ±2/±4/±8/±16 g | ±2/±4/±8/±16 g |
Angular Range | ±125/±245/±500/±1000/±2000 dps | ±125/±245/±500/±1000/±2000 dps | ±125/±250/±500/±1000/±2000 dps |
Linear acceleration zero-g level offset accuracy | ±20 mg | ±40 mg | ±40 mg |
Linear acceleration self-test output change | N/A | 90–1700 mg | 90–1700 mg |
Linear acceleration output data rate | 12.5 Hz … 1.6 kHz | 1.6 … 6664 Hz | 1.6 … 6664 Hz |
Rate noise density in high performance mode | 160 µg/√Hz 0.008 dps/√Hz | 4 mdps/√Hz | 3.8 mdps/√Hz |
Acceleration g for 0.2 ms | 10,000 g | 10,000 g | 10,000 g |
Analog supply voltage | 1.71 V to 3.6 V | 1.71 V to 3.6 V | 1.71 V to 3.6 V |
Device | ||||||
---|---|---|---|---|---|---|
Mean Acceleration | No of Steps | Trials | Smartphone 1 (Mean ± SD) | Smartphone 2 (Mean ± SD) | Smartphone 3 (Mean ± SD) | Vicon System (Mean ± SD) |
X axis | 1 | 9 | −0.0497 ± 0.0050 | −0.0492 ± 0.0048 | −0.0487 ± 0.0041 | −0.0495 ± 0.0042 |
2 | −0.0512 ± 0.0016 | −0.0487 ± 0.0035 | −0.0466 ± 0.0037 | −0.0468 ± 0.0043 | ||
3 | −0.0484 ± 0.0035 | −0.0506 ± 0.0037 | −0.0476 ± 0.0046 | −0.0496 ± 0.0029 | ||
4 | −0.0486 ± 0.0040 | −0.0493 ± 0.0037 | −0.0496 ± 0.0050 | −0.0495 ± 0.0030 | ||
5 | −0.0488 ± 0.0047 | −0.0486 ± 0.0036 | −0.0507 ± 0.0038 | −0.0493 ± 0.0049 | ||
6 | −0.0495 ± 0.0033 | −0.0499 ± 0.0043 | −0.0518 ± 0.0020 | −0.0490 ± 0.0053 | ||
Total | 54 | −0.0494 ± 0.0038 | −0.0494 ± 0.0038 | −0.0492 ± 0.0042 | −0.0489 ± 0.0041 | |
Y axis | 1 | 9 | −0.0237 ± 0.0083 | −0.0286 ± 0.0091 | −0.0279 ± 0.0099 | −0.0287 ± 0.0060 |
2 | −0.0287 ± 0.0088 | −0.0314 ± 0.0074 | −0.0305 ± 0.0080 | −0.0241 ± 0.0072 | ||
3 | −0.0274 ± 0.0076 | −0.0309 ± 0.0089 | −0.0279 ± 0.0064 | −0.0226 ± 0.0072 | ||
4 | −0.0282 ± 0.0110 | −0.0269 ± 0.0073 | −0.0292 ± 0.0069 | −0.0220 ± 0.0077 | ||
5 | −0.0294 ± 0.0070 | −0.0246 ± 0.0062 | −0.0272 ± 0.0079 | −0.0291 ± 0.0083 | ||
6 | −0.0270 ± 0.0090 | −0.0269 ± 0.0094 | −0.0231 ± 0.0066 | −0.0236 ± 0.0051 | ||
Total | 54 | −0.0274 ± 0.0085 | −0.0282 ± 0.0081 | −0.0276 ± 0.0077 | −0.0250 ± 0.0073 | |
Z axis | 1 | 9 | −0.0053 ± 0.0259 | −0.0031 ± 0.0245 | 0.0176 ± 0.0274 | 0.0074 ± 0.0311 |
2 | 0.0017 ± 0.0351 | 0.0088 ± 0.0291 | 0.0186 ± 0.0199 | 0.0176 ± 0.0166 | ||
3 | 0.0066 ± 0.0249 | 0.0155 ± 0.0309 | −0.0014 ± 0.0197 | −0.0054 ± 0.0312 | ||
4 | 0.0073 ± 0.0268 | 0.0287 ± 0.0203 | 0.0051 ± 0.0299 | 0.0165 ± 0.0309 | ||
5 | 0.0070 ± 0.0270 | 0.0067 ± 0.0246 | −0.0113 ± 0.0115 | 0.0124 ± 0.0240 | ||
6 | 0.0164 ± 0.0283 | −0.0015 ± 0.0251 | −0.0005 ± 0.0253 | 0.0068 ± 0.0281 | ||
Total | 54 | 0.0056 ± 0.0276 | 0.0092 ± 0.0270 | 0.0047 ± 0.0245 | 0.0092 ± 0.0273 |
X Axis Smartphone 1 | X Axis Smartphone 2 | X Axis Smartphone 3 | X Axis Vicon | ||
---|---|---|---|---|---|
X axis smartphone 1 | Pearson Correlation | 1 | −0.386 | −0.206 | 0.409 |
Sig. (2-tailed) | 0.001 | 0.084 | 0.039 | ||
N | 71 | 71 | 71 | 71 | |
X axis smartphone 2 | Pearson Correlation | −0.386 | 1 | 0.460 | −0.266 |
Sig. (2-tailed) | 0.001 | 0.000 | 0.025 | ||
N | 71 | 71 | 71 | 71 | |
X axis smartphone 3 | Pearson Correlation | −0.206 | 0.460 | 1 | −0.464 |
Sig. (2-tailed) | 0.084 | 0.000 | 0.000 | ||
N | 71 | 71 | 71 | 71 | |
X axis Vicon | Pearson Correlation | −0.409 | −0.266 | −0.464 | 1 |
Sig. (2-tailed) | 0.039 | 0.025 | 0.000 | ||
N | 71 | 71 | 71 | 71 |
Y Axis Smartphone 1 | Y Axis Smartphone 2 | Y Axis Smartphone 3 | Y Axis Vicon | ||
---|---|---|---|---|---|
Y axis smartphone 1 | Pearson Correlation | 1 | 0.212 | −0.163 | −0.415 |
Sig. (2-tailed) | 0.075 | 0.175 | 0.000 | ||
N | 71 | 71 | 71 | 71 | |
Y axis smartphone 2 | Pearson Correlation | 0.212 | 1 | 0.239 | −0.354 |
Sig. (2-tailed) | 0.075 | 0.045 | 0.002 | ||
N | 71 | 71 | 71 | 71 | |
Y axis smartphone 3 | Pearson Correlation | −0.163 | 0.239 | 1 | 0.292 |
Sig. (2-tailed) | 0.175 | 0.045 | 0.001 | ||
N | 71 | 71 | 71 | 71 | |
Y axis Vicon | Pearson Correlation | −0.415 | −0.354 | 0.392 | 1 |
Sig. (2-tailed) | 0.000 | 0.002 | 0.001 | ||
N | 71 | 71 | 71 | 71 |
Z Axis Smartphone 1 | Z Axis Smartphone 2 | Z Axis Smartphone 3 | Z Axis Vicon | ||
---|---|---|---|---|---|
Z axis smartphone 1 | Pearson Correlation | 1 | 0.304 | −0.232 | −0.306 |
Sig. (2-tailed) | 0.010 | 0.052 | 0.009 | ||
N | 71 | 71 | 71 | 71 | |
Z axis smartphone 2 | Pearson Correlation | 0.304 | 1 | −0.078 | −0.255 |
Sig. (2-tailed) | 0.010 | 0.518 | 0.032 | ||
N | 71 | 71 | 71 | 71 | |
Z axis smartphone 3 | Pearson Correlation | −0.232 | −0.078 | 1 | −0.330 |
Sig. (2-tailed) | 0.052 | 0.518 | 0.002 | ||
N | 71 | 71 | 71 | 71 | |
Z axis Vicon | Pearson Correlation | −0.306 | −0.255 | −0.330 | 1 |
Sig. (2-tailed) | 0.009 | 0.032 | 0.002 | ||
N | 71 | 71 | 71 | 71 |
AM Smartphone 1 | AM Smartphone 2 | AM Smartphone 3 | AM Vicon | ||
---|---|---|---|---|---|
AM smartphone 1 | ICC | - | 0.491 | 0.632 | −0.348 |
Sig. | - | 0.003 | 0.977 | 0.008 | |
N | - | 71 | 71 | 71 | |
AM smartphone 2 | ICC | 0.491 | - | −0.110 | 0.796 |
Sig. | 0.003 | - | 0.666 | 0.001 | |
N | 71 | - | 71 | 71 | |
AM smartphone 3 | ICC | 0.632 | −0.110 | - | 0.270 |
Sig. | 0.977 | 0.666 | - | 0.001 | |
N | 71 | 71 | - | 71 | |
AM Vicon | ICC | −0.348 | 0.796 | 0.270 | - |
Sig. | 0.008 | 0.001 | 0.001 | - | |
N | 71 | 71 | 71 | - |
System | Strengths | Weaknesses |
---|---|---|
Vicon MX |
|
|
Smartphone Accelerometers |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grouios, G.; Ziagkas, E.; Loukovitis, A.; Chatzinikolaou, K.; Koidou, E. Accelerometers in Our Pocket: Does Smartphone Accelerometer Technology Provide Accurate Data? Sensors 2023, 23, 192. https://doi.org/10.3390/s23010192
Grouios G, Ziagkas E, Loukovitis A, Chatzinikolaou K, Koidou E. Accelerometers in Our Pocket: Does Smartphone Accelerometer Technology Provide Accurate Data? Sensors. 2023; 23(1):192. https://doi.org/10.3390/s23010192
Chicago/Turabian StyleGrouios, George, Efthymios Ziagkas, Andreas Loukovitis, Konstantinos Chatzinikolaou, and Eirini Koidou. 2023. "Accelerometers in Our Pocket: Does Smartphone Accelerometer Technology Provide Accurate Data?" Sensors 23, no. 1: 192. https://doi.org/10.3390/s23010192
APA StyleGrouios, G., Ziagkas, E., Loukovitis, A., Chatzinikolaou, K., & Koidou, E. (2023). Accelerometers in Our Pocket: Does Smartphone Accelerometer Technology Provide Accurate Data? Sensors, 23(1), 192. https://doi.org/10.3390/s23010192