PCB-Based Planar Inductive Loops for Partial Discharges Detection in Power Cables
Abstract
:1. Introduction
2. Inductive Sensors: Design and Characteristics
3. Defective Cable and Experiment Setup
3.1. Power Cable Characteristics
3.2. PD Assessment Setup
4. PD Measurement: Results and Discussion
4.1. Induced Voltages Shapes and Spectra
4.2. Notes and Observations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rezaee, M.; Abdoos, A.A.; Farzinfar, M. A precise analytical method for fault location in HVAC cables. Electr. Power Syst. Res. 2021, 196, 107186. [Google Scholar] [CrossRef]
- Madonia, A.; Sanseverino, E.R.; Romano, P.; Troia, I.; Bononi, S.F.; Albertini, M.; Giannini, S.; Mazzanti, G. Wireless partial discharge tracking on cross-linked polyethylene MV and HV cables. IEEE Electr. Insul. Mag. 2018, 34, 8–17. [Google Scholar] [CrossRef]
- Mashikian, M.; Szarkowski, A. Medium voltage cable defects revealed by off-line partial discharge testing at power frequency. IEEE Electr. Insul. Mag. 2006, 22, 24–32. [Google Scholar] [CrossRef]
- Mayoux, C. Degradation of insulating materials under electrical stress. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 590–601. [Google Scholar] [CrossRef]
- IEEE. Guide for Partial Discharge Testing of Shielded Power Cable Systems in a Field Environment; IEEE: Piscataway, NJ, USA, 2007. [Google Scholar]
- Liao, Y.; Liu, H.; Yuan, J.; Xu, Y.; Zhou, W.; Zhou, C. A holistic approach to risk-based maintenance scheduling for HV cables. IEEE Access 2019, 7, 118975–118985. [Google Scholar] [CrossRef]
- Densley, J. Ageing mechanisms and diagnostics for power cables-an overview. IEEE Electr. Insul. Mag. 2001, 17, 14–22. [Google Scholar] [CrossRef]
- Montanari, G.C.; Cavallini, A.; Puletti, F. A new approach to partial discharge testing of HV cable systems. IEEE Electr. Insul. Mag. 2006, 22, 14–23. [Google Scholar] [CrossRef]
- Cichecki, P.; Stewayan, J.; Gulski, E.; Smit, J.J.; Chmura, L. Investigation of PD occurrence and detectability in high voltage power cable accessories. In Proceedings of the 2010 International Conference on High Voltage Engineering and Application, New Orleans, LA, USA, 11–14 October 2010; pp. 264–267. [Google Scholar]
- Shafiq, M.; Kauhaniemi, K.; Robles, G.; Isa, M.; Kumpulainen, L. Online condition monitoring of MV cable feeders using Rogowski coil sensors for PD measurements. Electr. Power Syst. Res. 2019, 167, 150–162. [Google Scholar] [CrossRef]
- Imburgia, A.; Kaziz, S.; Romano, P.; Flandre, D.; Artale, G.; Rizzo, G.; Viola, F.; Tounsi, F.; Ala, G. Investigation of PCB-based Inductive Sensors Orientation for Corona Partial Discharge Detection. In Proceedings of the 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 14–16 June 2022; pp. 559–563. [Google Scholar]
- Mazzanti, G.; Castellon, J.; Chen, G.; Fothergill, J.; Fu, M.; Hozumi, N.; Lee, J.; Li, J.; Marzinotto, M.; Mauseth, F.; et al. The insulation of HVDC extruded cable system joints. Part 2: Proposal of a new AC voltage PD measurement protocol for quality control during routine tests. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 973–980. [Google Scholar] [CrossRef]
- Stone, G.; Chan, C.; Sedding, H. Relative ability of UHF antenna and VHF capacitor methods to detect partial discharge in turbine generator stator windings. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 3069–3078. [Google Scholar] [CrossRef]
- Robles, G.; Martinez-Tarifa, J.M.; Rojas-Moreno, M.V.; Sanz-Feito, J. Inductive sensor for measuring high frequency partial discharges within electrical insulation. IEEE Trans. Instrum. Meas. 2009, 58, 3907–3913. [Google Scholar] [CrossRef]
- Uwiringiyimana, J.P.; Khayam, U.; Montanari, G.C. “Comparative Analysis of Partial Discharge Detection Features Using a UHF Antenna and Conventional HFCT Sensor. IEEE Access 2022, 10, 107214–107226. [Google Scholar] [CrossRef]
- Álvarez, F.; Garnacho, F.; Ortego, J.; Sánchez-Urán, M.Á. Application of HFCT and UHF sensors in on-line partial discharge measurements for insulation diagnosis of high voltage equipment. Sensors 2015, 15, 7360–7387. [Google Scholar] [CrossRef] [Green Version]
- Ardila-Rey, J.A.; Rojas-Moreno, M.V.; Martínez-Tarifa, J.M.; Robles, G. Inductive sensor performance in partial discharges and noise separation by means of spectral power ratios. Sensors 2014, 14, 3408–3427. [Google Scholar] [CrossRef] [Green Version]
- Argüeso, M.; Robles, G.; Sanz, J. Implementation of a Rogowski coil for the measurement of partial discharges. Rev. Sci. Instrum. 2005, 76, 065107. [Google Scholar] [CrossRef]
- Rodrigo-Mor, A.; Muñoz, F.A.; Castro-Heredia, L.C. Principles of charge estimation methods using high-frequency current transformer sensors in partial discharge measurements. Sensors 2020, 20, 2520. [Google Scholar] [CrossRef]
- Ardila-Rey, J.A.; Barrueto, A.; Zerene, A.; de Castro, B.A.; Ulson, J.A.C.; Mas’ ud, A.A.; Valdivia, P. Behavior of an inductive loop sensor in the measurement of partial discharge pulses with variations in its separation from the primary conductor. Sensors 2018, 18, 2324. [Google Scholar] [CrossRef] [Green Version]
- Kumar, C.P.; Khalid, N.A.; Ahmad, M.; Nawawi, Z.; Sidik, M.; Jambak, M.; Kurnia, R.; Waldi, E. Development and Validation of Rogowski Coil with Commercial High Frequency Current Transformer for Partial Discharge Detection. In Proceedings of the 2018 International Conference on Electrical Engineering and Computer Science (ICECOS), Pangkal, Indonesia, 2–4 October 2018; pp. 315–320. [Google Scholar]
- Waldi, E.P.; Lestari, A.I.; Fernandez, R.; Mulyadi, S.; Murakami, Y.; Hozumi, N. Rogowski coil sensor in the digitization process to detect partial discharge. TELKOMNIKA (Telecommun. Comput. Electron. Control.) 2020, 18, 1062–1071. [Google Scholar] [CrossRef]
- Ardila-Rey, J.A.; Montaña, J.; De Castro, B.A.; Schurch, R.; Ulson, J.A.C.; Muhammad-Sukki, F.; Bani, N.A. A comparison of inductive sensors in the characterization of partial discharges and electrical noise using the chromatic technique. Sensors 2018, 18, 1021. [Google Scholar] [CrossRef] [Green Version]
- Zeidi, N.; Kaziz, S.; Said, M.H.; Rufer, L.; Cavallini, A.; Tounsi, F. Partial discharge detection with on-chip spiral inductor as a loop antenna. Rev. Sci. Instrum. 2021, 92, 094701. [Google Scholar] [CrossRef]
- Hussain, G.A.; Zaher, A.A.; Hummes, D.; Safdar, M.; Lehtonen, M. Hybrid sensing of internal and surface partial discharges in air-insulated medium voltage switchgear. Energies 2020, 13, 1738. [Google Scholar] [CrossRef] [Green Version]
- Rozi, F.; Khayam, U. Development of loop antennas for partial discharge detection. Int. J. Electr. Eng. Inform. 2015, 7, 29. [Google Scholar] [CrossRef]
- Tounsi, F.; Said, M.H.; Hauwaert, M.; Kaziz, S.; Francis, L.A.; Raskin, J.-P.; Flandre, D. Variation Range of Different Inductor Topologies with Shields for RF and Inductive Sensing Applications. Sensors 2022, 22, 3514. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.V.R.; Robles, G.; Albarracin, R.; Rey, J.A.; Tarifa, J.M.M. Study on the self-integration of a Rogowski coil used in the measurement of partial discharges pulses. Electr. Eng. 2017, 99, 817–826. [Google Scholar] [CrossRef]
Parameter | n | D | d | w | s |
---|---|---|---|---|---|
Value | 6.5 | 20 mm | 5.2 mm | 0.4 mm | 0.4 mm |
Parameters/ Topology | Ls (nH) (@1 MHz) | Rs (Ω) (@1 MHz) | Cs (pF) | SFR (MHz) | ||||
---|---|---|---|---|---|---|---|---|
Simul | Meas | Simul | Meas | Simul | Meas | Simul | Meas | |
Spiral | 997 | 1000 | 1.03 | 0.95 | 1.3 | 1.6 | 99 | 130 |
Non-spiral | 19 | 22 | 0.04 | 0.06 | 1.1 | 1.06 | 1100 | 1085 |
Meander | 190 | 185 | 0.99 | 1.3 | 0.59 | 0.62 | 608 | 463 |
Cable Parameters | Characteristics |
---|---|
Core | Conductor Material: Copper |
Conductor cross-section | 150 mm2 |
Inner semi-conducting layer | Black semi-conductive cross-linkable compound |
Insulation | Hard-grade ethylene propylene rubber (HEPR) |
Insulation thickness | 4.85 mm (min.)/5.5 mm (avg.) |
Outer semi-conducting layer | Extruded cold strippable elastomeric compound |
Earth screen | Bare copper wire |
Earth screen cross-section | 25 mm2 |
Outer sheath | Special thermoplastic, M16 type (red color) |
Separation distance (cm) | 0 (P1) | 10 (P2) | 20 | 30 | 40 | 50 | 100 | 150 | 300 |
PD pulse amplitude (mV) | 500 | 428 | 375 | 334 | 296 | 258 | 216 | 208 | 71 |
Main peak Frequency (MHz) | 34 | 32 | 32.6 | 32.4 | 32.3 | 32.3 | 32.3 | 32.2 | 15.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaziz, S.; Romano, P.; Imburgia, A.; Ala, G.; Sghaier, H.; Flandre, D.; Tounsi, F. PCB-Based Planar Inductive Loops for Partial Discharges Detection in Power Cables. Sensors 2023, 23, 290. https://doi.org/10.3390/s23010290
Kaziz S, Romano P, Imburgia A, Ala G, Sghaier H, Flandre D, Tounsi F. PCB-Based Planar Inductive Loops for Partial Discharges Detection in Power Cables. Sensors. 2023; 23(1):290. https://doi.org/10.3390/s23010290
Chicago/Turabian StyleKaziz, Sinda, Pietro Romano, Antonino Imburgia, Guido Ala, Halim Sghaier, Denis Flandre, and Fares Tounsi. 2023. "PCB-Based Planar Inductive Loops for Partial Discharges Detection in Power Cables" Sensors 23, no. 1: 290. https://doi.org/10.3390/s23010290
APA StyleKaziz, S., Romano, P., Imburgia, A., Ala, G., Sghaier, H., Flandre, D., & Tounsi, F. (2023). PCB-Based Planar Inductive Loops for Partial Discharges Detection in Power Cables. Sensors, 23(1), 290. https://doi.org/10.3390/s23010290