Magnetomechanical Properties of Fe-Si-B and Fe-Co-Si-B Metallic Glasses by Various Annealing Temperatures for Actuation Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, J.; Das, J.; Xing, Z.; Li, J.; Viehland, D. Comparison of noise floor and sensitivity for different magnetoelectric laminates. J. Appl. Phys. 2010, 108, 084509. [Google Scholar] [CrossRef] [Green Version]
- Squire, P.T. Magnetomechanical measurements of magnetically soft amorphous materials. Meas. Sci. Technol. 1994, 5, 67–81. [Google Scholar] [CrossRef]
- Marín, P.; Marcos, M.; Hernando, A. High magnetomechanical coupling on magnetic microwire for sensors with biological applications. Appl. Phys. Lett. 2010, 96, 262512. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Wang, X.; Lin, H.; Gao, Y.; Sun, N.; He, Y.; Zaeimbashi, M. A Portable Very Low Frequency (VLF) Communication System Based on Acoustically Actuated Magnetoelectric Antennas. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 398–402. [Google Scholar] [CrossRef]
- Narita, F.; Fox, M. A Review on Piezoelectric, Magnetostrictive, and Magnetoelectric Materials and Device Technologies for Energy Harvesting Applications. Adv. Eng. Mater. 2017, 20, 1700743. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Wu, M.; Song, X.; Huang, Y.-P.; Jia, Q.; Tao, Y.-F.; Wang, C. Research progress of small low-frequency transmitting antenna. Acta Phys. Sin. 2020, 69, 208401. [Google Scholar] [CrossRef]
- Ding, H. DARPA’s robotic antenna project could revolutionize military communications. Modern Military Affairs. 2017, 4, 71. (In Chinese) [Google Scholar]
- Skrivervik, A.K.; Zurcher, J.-F.; Staub, O.; Mosig, J.R. PCS antenna design: The challenge of miniaturization. IEEE Antennas Propag. Mag. 2001, 43, 12–27. [Google Scholar] [CrossRef]
- Kramer, B.A.; Chen, C.-C.; Lee, M.; Volakis, J.L. Fundamental Limits and Design Guidelines for Miniaturizing Ultra-Wideband Antennas. IEEE Antennas Propag. Mag. 2009, 51, 57–69. [Google Scholar] [CrossRef]
- Gianvittorio, J.P.; Rahmat-Samii, Y. Fractal antennas: A novel antenna miniaturization technique, and applications. IEEE Antennas Propag. Mag. 2002, 44, 20–36. [Google Scholar] [CrossRef]
- Mosallaei, H.; Sarabandi, K. Antenna Miniaturization and Bandwidth Enhancement Using a Reactive Impedance Substrate. IEEE Trans. Antennas Propag. 2004, 52, 2403–2414. [Google Scholar] [CrossRef]
- Nan, T.; Lin, H.; Gao, Y.; Matyushov, A.; Yu, G.; Chen, H.; Sun, N.; Wei, S.; Wang, Z.; Li, M.; et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nat. Commun. 2017, 36, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabacoff, L.T. Thermal, magnetic, and magnetomechanical properties of Metglas 2605 S2 and S3. J. Appl. Phys. 1982, 53, 8098–8100. [Google Scholar] [CrossRef]
- Savage, H.; Clark, A.; Powers, J. Magnetomechanical coupling and ΔE effect in highly magnetostrictive rare earth—Fe2 compounds. IEEE Trans. Magn. 1978, 11, 1355–1357. [Google Scholar] [CrossRef]
- Duwez, P.; Willens, R.H.; Klement, W. Continuous Series of Metastable Solid Solutions in Silver-Copper Alloys. J. Appl. Phys. 1960, 31, 1136–1137. [Google Scholar] [CrossRef]
- Yao, K.F. Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys. Acta Phys. Sin. 2018, 67, 016101. [Google Scholar]
- Arai, K.; Tsuya, N.; Yamada, M.; Masumoto, T. Giant ΔE effect and magnetomechanical coupling factor in amorphous Fe80P13C7 ribbons. IEEE Trans. Magn. 1976, 12, 936–938. [Google Scholar] [CrossRef]
- Brouha, M.; van der Borst, J. The effect of annealing conditions on the magneto-mechanical properties of Fe-B-Si amorphous ribbons. J. Appl. Phys. 1979, 50, 7594. [Google Scholar] [CrossRef]
- Modzelewski, C.; Savage, H.; Kabacoff, L.; Clark, A. Magnetomechanical coupling and permeability in transversely annealed metglas 2605 alloys. IEEE Trans. Magn. 1981, 17, 2837–2839. [Google Scholar] [CrossRef]
- Beach, R.S.; Berkowitz, A.E. Sensitive field- and frequency-dependent impedance spectra of amorphous FeCoSiB wire and ribbon (invited). J. Appl. Phys. 1994, 76, 6209–6213. [Google Scholar] [CrossRef]
- Mohri, K.; Kohsawa, T.; Kawashima, K.; Yoshida, H.; Panina, L.V. Magneto-inductive effect (MI effect) in amorphous wires. IEEE Trans. Magn. 1992, 28, 3150–3152. [Google Scholar] [CrossRef]
- Leung, C.M.; Li, J.; Viehland, D.; Zhuang, X. A review on applications of magnetoelectric composites: From heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters. J. Phys. D Appl. Phys. 2018, 51, 263002. [Google Scholar] [CrossRef]
- Dong, S.; Zhai, J.; Xing, Z.; Li, J.; Viehland, D. Giant magnetoelectric effect (under a dc magnetic bias of 2Oe) in laminate composites of FeBSiC alloy ribbons and Pb(Zn1/3,Nb2/3)O3–7%PbTiO3 fibers. Appl. Phys. Lett. 2007, 91, 022915. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.; Carazo, A.V.; Uchino, K.; Kim, H.-E. Magnetoelectric Properties in Piezoelectric and Magnetostrictive Laminate Composites. Jpn. J. Appl. Phys. 2001, 40, 4948–4951. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, X.; Leung, C.-M.; Li, J.; Viehland, D. Estimation of the Intrinsic Power Efficiency in Magnetoelectric Laminates Using Temperature Measurements. Sensors 2020, 20, 3332. [Google Scholar] [CrossRef]
- Ueda, M.; Wakatsuki, N. Investigation of internal loss and power transmission characteristic of width shear vibration piezoelectric transformer. Jpn. J. Appl. Phys. 1994, 33, 2953–2956. [Google Scholar] [CrossRef]
- Zheng, J.; Takahashi, S.; Yoshikawa, S.; Uchino, K. Heat generation in multilayer piezoelelctric actuator. J. Am. Ceram. Soc. 1996, 79, 3193–3198. [Google Scholar] [CrossRef]
- Shekhani, H.; Uchino, K. Characterization of mechanical loss in piezoelectric materials using temperature and vibration measurements. J. Am. Ceram. Soc. 2014, 97, 2810–2814. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Barandiarán, J.M.; Nielsen, O.V. Magnetoelastic Properties of Some Fe-Rich Fe-Co-Si-B Metallic Glasses. Phys. Status Solidi 1989, 111, 279–283. [Google Scholar] [CrossRef]
- Hernando, A.; Madurga, V.; Barandiarán, J.M.; Liniers, M. Anomalous eddy currents in magnetostrictive amorphous ferromagnets: A large contribution from magnetoelastic effects. J. Magn. Magn. Mater. 1982, 28, 109–116. [Google Scholar] [CrossRef]
- Stoyanov, P.G.; Grimes, C.A. A remote query magnetostrictive viscosity sensor. Sens. Actuators A Phys. 2000, 80, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Gómez, C.; Marín, P.; Hernando, A. Bias free magnetomechanical coupling on magnetic microwires for sensing applications. Appl. Phys. Lett. 2013, 103, 142414. [Google Scholar] [CrossRef]
- Leung, C.M.; Zhuang, X.; Xu, J.; Li, J.; Zhang, J.; Srinivasan, G.; Viehland, D. Enhanced tunability of magneto-impedance and magneto-capacitance in annealed Metglas/PZT magnetoelectric composites. AIP Adv. 2018, 8, 055803. [Google Scholar] [CrossRef]
- Kaczkowski, Z. Magnetomechanical properties of rapidly quenched materials. Mater. Sci. Eng. A 1997, 226–228, 614–625. [Google Scholar] [CrossRef]
- Kaczkowski, Z.; Vlasák, G.; Švec, P.; Duhaj, P.; Ruuskanen, P.; Barandiarán, J.M.; Gutiérrez, J.; Minguez, P. Influence of heat-treatment on magnetic, magnetostrictive and piezomagnetic properties and structure of Fe64Ni10Nb3Cu1Si13B9 metallic glass. Mater. Sci. Eng. A 2004, 375–377, 1065–1068. [Google Scholar] [CrossRef]
- Zhukova, V.; Ipatov, M.; Corte-Leon, P.; Blanco, J.M.; Zanaeva, E.; Bazlov, A.I.; Jiang, J.; Louzguine-Luzgin, D.V.; Olivera, J.; Zhukov, A. Excellent magnetic properties of (Fe0.7Co0.3)83.7Si4B8P3.6Cu0.7 ribbons and microwires. Intermetallics 2020, 117, 106660. [Google Scholar] [CrossRef]
- Sagasti, A.; Gutiérrez, J.; Lasheras, A.; Barandiarán, J.M. Size Dependence of the Magnetoelastic Properties of Metallic Glasses for Actuation Applications. Sensors 2019, 19, 4296. [Google Scholar] [CrossRef] [Green Version]
- Saiz, P.G.; Gandía, D.; Lasheras, A.; Sagasti, A.; Quintana, I.; Fernández-Gubieda, M.L.; Gutiérrez, J.; Arriortua, M.; Lopes, A.C. Enhanced mass sensitivity in novel magnetoelastic resonators for advanced detection systems. Sens. Actuators B Chem. 2019, 296, 126612. [Google Scholar] [CrossRef]
- Zhuang, X.; Leung, C.M.; Li, J.; Srinivasan, G.; Viehland, D. Power Conversion Efficiency and Equivalent Input Loss Factor in Magnetoelectric Gyrators. IEEE Trans. Ind. Electron. 2019, 66, 2499–2505. [Google Scholar] [CrossRef]
- Morito, N.; Suzuki, T.; Maeda, C.; Yamashita, T.; Kitano, Y. Magnetic properties and surface crystallization induced by selective oxidation in Fe-B-Si amorphous alloy. J. Mater. Sci. 1990, 25, 5166–5172. [Google Scholar] [CrossRef]
- Liu, C.; Inoue, A.; Kong, F.L.; Zanaeva, E.; Bazlov, A.; Churyumov, A.; Zhu, S.L.; Al-Marzouki, F.; Shull, R.D. Fe-B-Si-C-Cu amorphous and nanocrystalline alloys with ultrahigh hardness and enhanced soft magnetic properties. J. Non-Cryst. Solids 2021, 554, 120606. [Google Scholar] [CrossRef]
- Makino, A.; Kubota, T.; Chang, C.; Makabe, M.; Inoue, A. FeSiBP Bulk Metallic Glasses with Unusual Combination of High Magnetization and High Glass-Forming Ability. Mater. Trans. 2007, 48, 3024–3027. [Google Scholar] [CrossRef]
- Herzer, G.; Hilzinger, H.R. Surface crystallization and magnetic properties of iron-based metallic glasses. Phys. Scr. 1989, 39, 639–641. [Google Scholar] [CrossRef]
- Xu, J.; Leung, C.; Zhuang, X.; Li, J.; Bhardwaj, S.; Volakis, J.; Viehland, D. A Low Frequency Mechanical Transmitter Based on Magnetoelectric Heterostructures Operated at Their Resonance Frequency. Sensors 2019, 19, 853. [Google Scholar] [CrossRef] [Green Version]
- Nan, C.W.; Bichurin, M.I.; Dong, S.; Viehland, D.; Srinivasan, G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 2008, 103, 031101. [Google Scholar] [CrossRef]
Amorphous Alloy Composition | Dimension (mm) | Coupling Factor kmax (%) | Annealing Temperature, Time T (°C), t (min) | Magnetic Bias Hdc (A/m) |
---|---|---|---|---|
Fe73Si11B13Nb3 (wire) [3] | 3.9 (length), 0.1 (diameter) | 43 | 345, 120 | 50 |
Fe80P13C7 (ribbon) [17] | 60 × 2 × 0.03 | 53 | 350, 20 | 398 |
Fe80B15Si5 (ribbon) [18] | 50 × 1 × 0.03 | 86 | 350, 2 | 60 |
Fe67Co18B14Si (ribbon) [19] | 76 (length), 1.6 (width) | 71 | 360–375, 10 | 835 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zhang, X.; Wu, S.; Zhuang, X.; Yan, B.; Zhu, W.; Dolabdjian, C.; Fang, G. Magnetomechanical Properties of Fe-Si-B and Fe-Co-Si-B Metallic Glasses by Various Annealing Temperatures for Actuation Applications. Sensors 2023, 23, 299. https://doi.org/10.3390/s23010299
Sun Y, Zhang X, Wu S, Zhuang X, Yan B, Zhu W, Dolabdjian C, Fang G. Magnetomechanical Properties of Fe-Si-B and Fe-Co-Si-B Metallic Glasses by Various Annealing Temperatures for Actuation Applications. Sensors. 2023; 23(1):299. https://doi.org/10.3390/s23010299
Chicago/Turabian StyleSun, Yu, Xu Zhang, Sheng Wu, Xin Zhuang, Bin Yan, Wanhua Zhu, Christophe Dolabdjian, and Guangyou Fang. 2023. "Magnetomechanical Properties of Fe-Si-B and Fe-Co-Si-B Metallic Glasses by Various Annealing Temperatures for Actuation Applications" Sensors 23, no. 1: 299. https://doi.org/10.3390/s23010299
APA StyleSun, Y., Zhang, X., Wu, S., Zhuang, X., Yan, B., Zhu, W., Dolabdjian, C., & Fang, G. (2023). Magnetomechanical Properties of Fe-Si-B and Fe-Co-Si-B Metallic Glasses by Various Annealing Temperatures for Actuation Applications. Sensors, 23(1), 299. https://doi.org/10.3390/s23010299