Phase Nanoscopy with Correlated Frequency Combs
Abstract
:1. Introduction
2. Plurality of Sensors
3. Limits of Noise
3.1. Noise in Elongation Measurement
3.2. Phase Measurements
3.3. Noise Management
3.4. Intrinsic Noise Limit in the Phase Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, L.S.; Ye, J.; Dube, P.; Hall, J.L. Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity. J. Opt. Soc. Am. B 1999, 16, 2255. [Google Scholar] [CrossRef]
- Hänsch, T.W.; Schawlow, A.L.; Toschek, P.E. Ultrasensitive response of a cw dye laser to selective extinction. IEEE J. Quantum Electron. 1972, 8, 802–808. [Google Scholar] [CrossRef]
- Jones, R.J.; Diels, J.C.; Jasapara, J.; Rudolph, W. Stabilization of the frequency, phase, and repetition rate of an ultra-short pulse train to a Fabry–Perot reference cavity. Opt. Comm. 2000, 175, 409–418. [Google Scholar] [CrossRef]
- Udem, T.; Reichert, J.; Holzwarth, R.; Hänsch, T. Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser. Phys. Rev. Lett. 1999, 82, 3568–3571. [Google Scholar] [CrossRef] [Green Version]
- Udem, T.; Reichert, J.; Holzwarth, R.; Hänsch, T. Accurate measurement of large optical frequency differences with a mode-locked laser. Opt. Lett. 1999, 24, 881–883. [Google Scholar] [CrossRef] [PubMed]
- Malykin, G.B. The Sagnac effect: Correct and incorrect explanations. Phys. Usp. 2000, 43, 1229–1252. [Google Scholar] [CrossRef]
- Forshaw, J.R.; Smith, A.G. Dynamics and Relativity; JohnWiley & Sons Ltd.: New York, NY, USA, 2009; pp. 124–126. [Google Scholar]
- Dennis, M.L.; Diels, J.C.; Lai, M. The femtosecond ring dye laser: A potential new laser gyro. Opt. Lett. 1991, 16, 529–531. [Google Scholar] [CrossRef] [PubMed]
- Schmitt-Sody, A.; Velten, A.; Masuda, K.; Diels, J.C. Intra-cavity mode locked Laser Magnetometer. Opt. Commun. 2010, 283, 3339–3341. [Google Scholar] [CrossRef]
- Arissian, L.; Diels, J.C. Intracavity phase interferometry: Frequency comb sensors inside a laser cavity. Laser & Photonics Rev. 2014, 8, 799–826. [Google Scholar]
- Zavadilová, A.; Kubecek, V.; Vyhlidal, D. Synchronously Intracavity-Pumped Picosecond Optical Parametric Oscillators for Sensors. Sensors 2022, 22, 3200. [Google Scholar] [CrossRef] [PubMed]
- Velten, A.; Schmitt-Sody, A.; Diels, J.C. Precise intracavity phase measurement in an optical parametric oscillator with two pulses per cavity round-trip. Opt. Lett. 2010, 35, 1181–1183. [Google Scholar] [CrossRef] [PubMed]
- Zavadilová, A.; Vyhlidal, D.; Kubecek, V.; Sulc, J. Subharmonic synchronously intracavity pumped picosecond optical parametric oscillator for intracavity phase interferometry. Laser Phys. Lett. 2014, 11, 125403–125409. [Google Scholar] [CrossRef]
- Caves, C.M.; Thorne, K.S.; Drever, R.W.P.; Sandberg, V.D.; Zimmermann, M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 1981, 23, 1694–1708. [Google Scholar] [CrossRef]
- Chesnoy, J.; Fini, L. Stabilization of a femtosecond dye laser synchronously pumped by a frequency-doubled mode-locked YAG laser. Opt. Lett. 1986, 11, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Horstman, L.; Hsu, N.; Hendrie, J.; Smith, D.; Diels, J.C. Exceptional points and the ring laser gyroscope. Photon. Res. 2020, 8, 252–256. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Lenzner, M.; Diels, J.-C. Phase Nanoscopy with Correlated Frequency Combs. Sensors 2023, 23, 301. https://doi.org/10.3390/s23010301
Zhu X, Lenzner M, Diels J-C. Phase Nanoscopy with Correlated Frequency Combs. Sensors. 2023; 23(1):301. https://doi.org/10.3390/s23010301
Chicago/Turabian StyleZhu, Xiaobing, Matthias Lenzner, and Jean-Claude Diels. 2023. "Phase Nanoscopy with Correlated Frequency Combs" Sensors 23, no. 1: 301. https://doi.org/10.3390/s23010301
APA StyleZhu, X., Lenzner, M., & Diels, J. -C. (2023). Phase Nanoscopy with Correlated Frequency Combs. Sensors, 23(1), 301. https://doi.org/10.3390/s23010301