Monitoring Vehicle Pollution and Fuel Consumption Based on AI Camera System and Gas Emission Estimator Model
Abstract
:1. Introduction
2. System Implementation
2.1. Overall System Description
- Vehicle localisation and classification;
- Screen to world coordinate transform;
- Speed estimation.
2.2. Localisation and Classification
2.3. Screen-to-World Coordinates Transform
2.4. Multiple Object Tracking
- The lanes of the road are normally traversed in a single direction, so a vehicle may not travel backward with respect to the direction of the road. Moreover, the angle of travel can differ by a small amount with respect to the angle defined by the direction of the road;
- A vehicle can only change its angle of travel in small increments;
- A vehicle can only travel within a range of speeds;
- A vehicle will finish its trajectory when it crosses the goal line. The goal line is the line perpendicular to the angle of the road that is closer to the end of the road, i.e., the line that intersects the vehicle when it exits the visible part of the road.
Algorithm 1 Multiple Vehicle Tracking algorithm pseudocode. |
1: detections_per_frame contains an array per frame. It is ordered from most recent to least recent. 2: detections_per_frame[i] is an array that contains a 2D world coordinate per vehicle. 3: frame_margin is used to allow the vehicle to disappear from the scene, so all the trajectories can be found by the algorithm. 4: 5: procedure MVT 6: output ← ∅ 7: for frame_idx = frame_margin, len(detections_per_frame) do 8: for detection_idx = 0, len(detections_per_frame[frame idx]) do 9: detection ← detections_per_frame[frame_idx][detection_idx] 10: if detection.y >= (goal_line_y) then # This vehicle has crossed the end of the road. 11: trail_up ← FIND_TRAIL(frame_idx, detection, up) 12: # Remove each element of trail up from detections per frame 13: trail_down ← FIND_TRAIL(frame_idx, detection, down) 14: # Remove each element of trail down from detections per frame 15: trail ← concatenate(trail_up, trail_down) 16: output.append(trail) 17: end if 18: end for 19: end for 20: return output 21: end procedure 22: 23: procedure FIND_TRAIL(frame_idx, position, direction) 24: trail ← ∅ 25: max_skips← 5 26: maxdistance ← max_meters_in_frame_vertical 27: current_frame ← frame_idx 28: current_position ← position 29: while max_skips > 0 do 30: if direction = up then 31: current frame = current frame − 1 32: else 33: current frame = current frame + 1 34: end if 35: min_distance_idx ← −1 36: min distance ← ∞ 37: for detection_idx = 0, len(detections_per_frame[current_frame]) do 38: distance ← compute_distance(detection, current_position) 39: distance_x ← detection.x – current_position.x 40: if (distance < min_distance) and 41: ((direction = up) and (detection.y > current position.y) or 42: (direction = down) and (detection.y < current position.y) and 43: (distance_x < max_meters_in_frame_horizontal) then 44: min_distance_idx ← detection_idx 45: min_distance ← distance 46: end if 47: end for 48: if min_distance_idx = −1 and min_distance < max_distance then 49: max_skips ← 5 50: max_distance ← max_meters_in_frame_vertical 51: current_position ← detections_per_frame[current_frame][min_distance idx] 52: trail.append([current_frame, min_distance_idx]) 53: else 54: max_skips ← max_skips − 1 55: max_distance ← max_distance ∗ 2 56: end if 57: end while 58: end procedure |
3. Results
3.1. Speed Estimation Error
- FullACC is a fully automated system where the vanishing points and lanes are inferred by the trajectory of the vehicles, and the scale is inferred by applying a statistical model of the size of the car on the detected bounding box of each vehicle;
- OptScale maintains the vanishing points calculated by FullACC and calculates the scale using the information of the vanishing point following the direction of the car, calculated by min eigenvector detector and KLT tracker;
- OptScale VP2 is the same as OptScale, but the vanishing point has been calculated by measuring the orientation of strong edges perpendicular to the first vanishing point;
- OptCalib keeps the first vanishing point from FullACC and uses the known second vanishing point, and computers scale from lengths in direction to the first vanishing point;
- OptCalib VP2 keeps the first vanishing point from FullACC and uses the known second vanishing point, and computes scale from lengths in direction to the second vanishing point.
3.2. Emission Estimation Error
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barca, S. Energy, property, and the industrial revolution narrative. Ecol. Econ. 2011, 70, 1309–1315. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, F.C. Climate Change and Air Pollution: Exploring the Synergies and Potential for Mitigation in Industrializing Countries. Sustainability 2009, 1, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Arana, M.; García, A. A social survey on the effects of environmental noise on the residents of Pamplona, Spain. Appl. Acoust. 1998, 53, 245–253. [Google Scholar] [CrossRef]
- Eze, I.C.; Foraster, M.; Schaffner, E.; Vienneau, D.; Pieren, R.; Imboden, M.; Wunderli, J.-M.; Cajochen, C.; Brink, M.; Röösli, M.; et al. Incidence of depression in relation to transportation noise exposure and noise annoyance in the SAPALDIA study. Environ. Int. 2020, 144, 106014. [Google Scholar] [CrossRef]
- Arana, M.; Martin, R.S.; Salinas, J.C. People exposed to traffic noise in european agglomerations from noise maps. A critical review. Noise Mapp. 2014, 1, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Hofman, W.; Kumar, A.; Tulen, J. Cardiac reactivity to traffic noise during sleep in man. J. Sound Vib. 1995, 179, 577–589. [Google Scholar] [CrossRef]
- Tzivian, L.; Soppa, V.; Winkler, A.; Hennig, F.; Weimar, C.; Moebus, S.; Hoffmann, B.; Jokisch, M. The role of depressive symptoms within the association of long-term exposure to indoor and outdoor traffic noise and cognitive function—Results from the Heinz Nixdorf Recall study. Int. J. Hyg. Environ. Health 2020, 230, 113570. [Google Scholar] [CrossRef]
- Yoshida, T.; Osada, Y.; Kawaguchi, T.; Hoshiyama, Y.; Yamamoto, K. Effects of road traffic noise on inhabitants of Tokyo. J. Sound Vib. 1997, 205, 517–522. [Google Scholar] [CrossRef]
- Lee, B.-J.; Kim, B.; Lee, K. Air Pollution Exposure and Cardiovascular Disease. Toxicol. Res. 2014, 30, 71–75. [Google Scholar] [CrossRef]
- Kurt, O.K.; Zhang, J.; Pinkerton, K.E. Pulmonary health effects of air pollution. Curr. Opin. Pulm. Med. 2016, 22, 138–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Union. 81/462/EEC: Council Decision of 11 June 1981 on the Conclusion of the Convention on Long-Range Trans-boundary Air Pollution, Document 31981D0462. Available online: https://eur-lex.europa.eu/legal-content/ES/ALL/?uri=CELEX%3A31981D0462 (accessed on 22 November 2021).
- Böhringer, C. The Kyoto Protocol: A Review and Perspectives. Oxf. Rev. Econ. Policy 2003, 19, 451–466. [Google Scholar] [CrossRef]
- United Nations. The Paris Agreement. United Nations Climate Change. 2015. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 15 November 2022).
- Goodland, R. The Concept of Environmental Sustainability. Annu. Rev. Ecol. Syst. 1995, 26, 1–24. Available online: https://www.jstor.org/stable/2097196 (accessed on 5 September 2022). [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development Goals. 2015. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld (accessed on 5 September 2022).
- Transport & Environment. How to Descarbonise European Transport by 2050. European Federation for Transport Environment AISBL. 2018. Available online: https://www.transportenvironment.org/wp-content/uploads/2021/07/2018_11_2050_synthesis_report_transport_decarbonisation.pdf (accessed on 5 September 2022).
- EASAC European Academies Science Advisory Council. Negative Emission Technologies: What Role in Meeting Paris Agreement Targets; German National Academy of Sciences Leopoldina: Berlin, Germany, 2018; ISBN 978-3-8047-3841-6. Available online: https://easac.eu/fileadmin/PDF_s/reports_statements/Negative_Carbon/EASAC_Report_on_Negative_Emission_Technologies.pdf (accessed on 17 October 2022).
- Gray, N.; McDonagh, S.; O’Shea, R.; Smyth, B.; Murphy, J.D. Decarbonising ships, planes and trucks: An analysis of suitable low-carbon fuels for the maritime, aviation and haulage sectors. Adv. Appl. Energy 2021, 1, 100008. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Mustafi, N.N. Real-world automotive emissions: Monitoring methodologies, and control measures. Renew. Sustain. Energy Rev. 2021, 137, 110624. [Google Scholar] [CrossRef]
- Achour, H.; Carton, J.; Olabi, A. Estimating vehicle emissions from road transport, case study: Dublin City. Appl. Energy 2011, 88, 1957–1964. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Jiang, S.; Liang, B. A Study on the Model of Traffic Flow and Vehicle Exhaust Emission. Math. Probl. Eng. 2013, 2013, 736285. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.-Q.; Ma, P.-J.; Zhou, S.-G. Macroscopic modeling approach to estimate traffic-related emissions in urban areas. Transp. Res. Part D: Transp. Environ. 2018, 60, 41–55. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). User’s Guide to MOBILE6.1 and MOBILE6.2: Mobile Source Emission Factor Model MOBILE, Mobile Source Emission Factor Model. EPA420-R-02-028. 2022. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/P1001DSD.PDF?Dockey=P1001DSD.PDF (accessed on 17 October 2022).
- California Air Resources Board. EMFAC2021 User’s Guide, 15 January 2021, Sacramento, CA, USA. Available online: https://ww2.arb.ca.gov/sites/default/files/2021-01/EMFAC202x_Users_Guide_01112021_final.pdf (accessed on 2 November 2022).
- Ntziachristos, L.; Samaras, Z. COPERT III. Computer Programme to Calculate Emissions from Road Transport: Methodology and Emission Factors. European Environment Agency, Technical Report No. 49, Version 2.1. 2016. Available online: https://www.eea.europa.eu/publications/Technical_report_No_49 (accessed on 19 December 2018).
- European Environment Agencia, COPERT 4 Estimating Emissions from Road Transport. Available online: https://www.eea.europa.eu/publications/copert-4-2014-estimating-emissions (accessed on 19 December 2018).
- Scora, G.; Barth, M. Comprehensive Modal Emissions Model (CMEM), Version 3.01, User’s Guide. University of California, Riverside Center for Environmental Research and Technology. 2006. Available online: https://www.cert.ucr.edu/sites/default/files/2019-07/CMEM_User_Guide_v3.01d.pdf (accessed on 17 October 2022).
- Ahn, K.; Rakha, H.; Trani, A.; Van Aerde, M. Estimating Vehicle Fuel Consumption and Emissions based on Instantaneous Speed and Acceleration Levels. J. Transp. Eng. 2002, 128, 182–190. [Google Scholar] [CrossRef]
- Smit, R.; Smokers, R.; Rabé, E. A new modelling approach for road traffic emissions: VERSIT+. Transp. Res. Part D: Transp. Environ. 2007, 12, 414–422. [Google Scholar] [CrossRef]
- Vallamsundar, S.; Lin, J. Lin MOVES versus MOBILE comparison of greenhouse gas and criterion pollutant emissions. Transp. Res. Rec. J. Transp. Res. Board 2011, 2233, 27–35. [Google Scholar] [CrossRef]
- Agencia Estatal Boletín Oficial del Estado. Ley 34/2007, BOE de 15 de Noviembre, de Calidad del Aire y Protección de la at-Mósfera, núm. 275, de 16 November 2007. Available online: https://www.boe.es/eli/es/l/2007/11/15/34/con (accessed on 22 November 2021).
- Agencia Estatal Boletín Oficial del Estado. Real Decreto 102/2011, BOE. de 28 de Enero, Relativo a la Mejora de la Calidad del aire, núm. 25, de 29 January 2011. Available online: https://www.boe.es/eli/es/rd/2011/01/28/102/con (accessed on 22 November 2021).
- Wang, Z.; Wu, G.; Scora, G. MOVESTAR: An Open-Source Vehicle Fuel and Emission Model based on USEPA MOVES. arXiv 2020, arXiv:2008.04986. [Google Scholar]
- PTV Group. PTV Vissim. Multimodal Traffic Simulation Software. Available online: https://www.myptv.com/en/mobility-software/ptv-vissim (accessed on 2 November 2022).
- Jamil, M.S.; Mazhar, A.; Ikram, A.; Ahmed, A.; Munawar, U. Smart Environment Monitoring System by Employing Wireless Sensor Networks on Vehicles for Pollution Free Smart Cities. Procedia Eng. 2015, 107, 480–484. [Google Scholar] [CrossRef] [Green Version]
- Duangsuwan, S.; Takarn, A.; Nujankaew, R.; Jamjareegulgarn, P. A Study of Air Pollution Smart Sensors LPWAN via NB-IoT for Thailand Smart Cities 4.0. In Proceedings of the 2018 10th International Conference on Knowledge and Smart Technology (KST), Chiang Mai, Thailand, 31 January–3 February 2018; pp. 206–209. [Google Scholar] [CrossRef]
- Llorca, D.F.; Martínez, A.H.; Daza, I.G. Vision-based vehicle speed estimation: A survey. IET Intell. Transp. Syst. 2021, 15, 987–1005. [Google Scholar] [CrossRef]
- Murashov, I.; Stroganov, Y. Method of determining vehicle speed according to video stream data. J. Physics: Conf. Ser. 2019, 1419, 012020. [Google Scholar] [CrossRef]
- Afifah, F.; Nasrin, S.; Mukit, A. Vehicle Speed Estimation using Image Processing. J. Adv. Res. Appl. Mech. 2019, 48, 9–16. [Google Scholar]
- Cheng, G.; Guo, Y.; Cheng, X.; Wang, D.; Zhao, J. Real-Time Detection of Vehicle Speed Based on Video Image. In Proceedings of the 2020 12th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA, Phuket, Thailand, 28–29 February 2020; pp. 313–317. [Google Scholar] [CrossRef]
- Sonth, A.; Settibhaktini, H.; Jahagirdar, A. Vehicle Speed Determination and License Plate Localization from Monocular Video Streams. In Proceedings of the 3rd International Conference on Computer Vision and Image Processing, Vancouver, BC, Canada, 26–28 August 2019; Springer: Singapore, 2019; pp. 267–277. [Google Scholar] [CrossRef]
- Biswas, D.; Su, H.; Wang, C.; Stevanovic, A. Speed Estimation of Multiple Moving Objects from a Moving UAV Platform. ISPRS Int. J. Geo-Inf. 2019, 8, 259. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rangel, H.; Morales-Rosales, L.A.; Imperial-Rojo, R.; Roman-Garay, M.A.; Peralta-Peñuñuri, G.E.; Lobato-Báez, M. Analysis of Statistical and Artificial Intelligence Algorithms for Real-Time Speed Estimation Based on Vehicle Detection with YOLO. Appl. Sci. 2022, 12, 2907. [Google Scholar] [CrossRef]
- Liu, C.; Huynh, D.Q.; Sun, Y.; Reynolds, M.; Atkinson, S. A Vision-Based Pipeline for Vehicle Counting, Speed Estimation, and Classification. IEEE Trans. Intell. Transp. Syst. 2020, 22, 7547–7560. [Google Scholar] [CrossRef]
- Gauttam, H.K.; Mohapatra, R.K. Speed Prediction of Fast Approaching Vehicle Using Moving Camera. In Computer Vision and Image Processing; Springer: Singapore, 2020; pp. 423–431. [Google Scholar] [CrossRef]
- Bell, D.; Xiao, W.; James, P. Accurate Vehicle Speed Estimation from Monocular Camera Footage. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, V-2-2020, 419–426. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.; Zhang, F.; Li, E.; Yang, T.; Lu, Z. An Adaptive Framework for Multi-Vehicle Ground Speed Estimation in Airborne Videos. Remote Sens. 2019, 11, 1241. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-H.; Oh, W.-T.; Choi, J.-H.; Park, J.-C. Reliability verification of vehicle speed estimate method in forensic videos. Forensic Sci. Int. 2018, 287, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Javadi, S.; Dahl, M.; Pettersson, M.I. Vehicle speed measurement model for video-based systems. Comput. Electr. Eng. 2019, 76, 238–248. [Google Scholar] [CrossRef]
- Dahl, M.; Javadi, S. Analytical Modeling for a Video-Based Vehicle Speed Measurement Framework. Sensors 2020, 20, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunawan, A.A.S.; Tanjung, D.A.; Gunawan, F.E. Detection of Vehicle Position and Speed using Camera Calibration and Image Projection Methods. Procedia Comput. Sci. 2019, 157, 255–265. [Google Scholar] [CrossRef]
- Famouri, M.; Azimifar, Z.; Wong, A. A Novel Motion Plane-Based Approach to Vehicle Speed Estimation. IEEE Trans. Intell. Transp. Syst. 2019, 20, 1237–1246. [Google Scholar] [CrossRef]
- Huang, T. Traffic Speed Estimation from Surveillance Video Data: For the 2nd NVIDIA AI City Challenge Track 1. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 161–1614. [Google Scholar] [CrossRef]
- Llorca, D.F.; Salinas, C.; Jimenez, M.; Parra, I.; Morcillo, A.G.; Izquierdo, R.; Lorenzo, J.; Sotelo, M.A. Two-camera based accurate vehicle speed measurement using average speed at a fixed point. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; pp. 2533–2538. [Google Scholar] [CrossRef]
- Vakili, E.; Shoaran, M.; Sarmadi, M.R. Single–camera vehicle speed measurement using the geometry of the imaging system. Multimedia Tools Appl. 2020, 79, 19307–19327. [Google Scholar] [CrossRef]
- Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 1980, 36, 193–202. [Google Scholar] [CrossRef]
- Oh, K.-S.; Jung, K. GPU implementation of neural networks. Pattern Recognit. 2004, 37, 1311–1314. [Google Scholar] [CrossRef]
- Sultana, F.; Sufian, A.; Dutta, P. A Review of Object Detection Models Based on Convolutional Neural Network. In Intelligent Computing: Image Processing Based Applications; Advances in Intelligent Systems and Computing; Mandal, J., Banerjee, S., Eds.; Springer: Singapore, 2020; Volume 1157. [Google Scholar] [CrossRef]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; Chanvichet, V.; Kwon, Y.; Xie, T.; Michael, K.; Fang, J.; Lorna; et al. Ultralytics/yolov5: v6.2—YOLOv5 Classification Models, Apple M1, Reproducibility, ClearML and Deci.ai Integrations. 2022; Available online: https://zenodo.org/record/7002879#.Y6mf93Yo9PY (accessed on 23 December 2022).
- Pytorch. Available online: https://pytorch.org/hub/ultralytics_yolov5/ (accessed on 23 December 2022).
- Pylyshyn, Z.W.; Storm, R.W. Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spat. Vis. 1988, 3, 179–197. [Google Scholar] [CrossRef] [Green Version]
- Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. arXiv 2017. [Google Scholar] [CrossRef]
- Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468. [Google Scholar] [CrossRef] [Green Version]
- Source Code. Available online: https://github.com/DoMondo/monitoring_vehicle_pollution (accessed on 23 December 2022).
- Sochor, J.; Juranek, R.; Spanhel, J.; Marsik, L.; Siroky, A.; Herout, A.; Zemcik, P. Comprehensive Data Set for Automatic Single Camera Visual Speed Measurement. IEEE Trans. Intell. Transp. Syst. 2019, 20, 1633–1643. [Google Scholar] [CrossRef]
System | Absolute Mean | Relative Mean | Absolute Median | Relative Median | Absolute 95 Percentile | Relative 95 Percentile |
---|---|---|---|---|---|---|
Ours | 4.26 | 5.59 | 1.28 | 1.68 | 21.85 | 27.79 |
FullACC | 8.59 | 10.89 | 8.45 | 11.41 | 17.14 | 19.84 |
OptScale | 1.71 | 2.13 | 1.17 | 1.51 | 4.69 | 5.56 |
OptScale VP2 | 15.66 | 19.83 | 13.09 | 17.51 | 47.86 | 59.25 |
OptCalib | 1.43 | 1.81 | 0.83 | 1.05 | 3.89 | 5.07 |
OptCalib VP2 | 2.43 | 30.8 | 1.40 | 1.76 | 6.66 | 8.00 |
System | Absolute Mean | Relative Mean | Absolute Median | Relative Median | Absolute 95 Percentile | Relative 95 Percentile |
---|---|---|---|---|---|---|
CO | 0.002234 g/s | 26.07% | 0 g | 0% | 0.0058 g/s | 124.96% |
HC | 0.000019 g/s | 27.16% | 0 g | 0% | 0.000164 g/s | 74.013% |
NOx | 0.000079 g/s | 16.72% | 0 g | 0% | 0.000625 g/s | 57.46% |
PM2.5 Ele | 0.000001 g/s | 12.67% | 0 g | 0% | 0.000003 g/s | 60.425% |
PM2.5 Org | 0.000003 g/s | 12.67% | 0 g | 0% | 0.000023 g/s | 60.425% |
Energy | 3.93 KJ/s | 5.48% | 0 g | 0% | 24.053 KJ/s | 31.83% |
CO2 | 0.28 g/s | 5.48% | 0 g | 0% | 1.71 g/s | 31.83% |
Fuel | 0.088 g/s | 5.48% | 0 g | 0% | 0.54 g/s | 31.83% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez Valido, M.; Gomez-Cardenes, O.; Magdaleno, E. Monitoring Vehicle Pollution and Fuel Consumption Based on AI Camera System and Gas Emission Estimator Model. Sensors 2023, 23, 312. https://doi.org/10.3390/s23010312
Rodriguez Valido M, Gomez-Cardenes O, Magdaleno E. Monitoring Vehicle Pollution and Fuel Consumption Based on AI Camera System and Gas Emission Estimator Model. Sensors. 2023; 23(1):312. https://doi.org/10.3390/s23010312
Chicago/Turabian StyleRodriguez Valido, Manuel, Oscar Gomez-Cardenes, and Eduardo Magdaleno. 2023. "Monitoring Vehicle Pollution and Fuel Consumption Based on AI Camera System and Gas Emission Estimator Model" Sensors 23, no. 1: 312. https://doi.org/10.3390/s23010312
APA StyleRodriguez Valido, M., Gomez-Cardenes, O., & Magdaleno, E. (2023). Monitoring Vehicle Pollution and Fuel Consumption Based on AI Camera System and Gas Emission Estimator Model. Sensors, 23(1), 312. https://doi.org/10.3390/s23010312