Sensor Equipped UAS for Non-Contact Bridge Inspections: Field Application
Abstract
:1. Introduction
2. Materials and Methods
3. Field Experiments
3.1. Selected Validation System
3.2. Selected Bridge for Field Deployment of Sensor
3.3. Understanding the Movements of Selected Bridge
3.4. Experiment
4. Results
4.1. Experiment Data Summary
4.2. Processing of Experiment Frames
4.3. Summary of Results
4.3.1. Experiment 2
4.3.2. Experiment 5
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ASCE Infrastructure Report Card. 2021. Available online: https://infrastructurereportcard.org/ (accessed on 17 October 2022).
- Seo, J.; Duque, L.; Wacker, J. Drone-enabled bridge inspection methodology and application. Autom. Constr. 2018, 94, 112–126. [Google Scholar] [CrossRef]
- ASCE Infrastructure Report Card. Rail Infrastructure. 2021. Available online: https://infrastructurereportcard.org/cat-item/rail-infrastructure/ (accessed on 10 October 2022).
- Moreu, F.; Jo, H.; Li, J.; Kim, R.E.; Cho, S.; Kimmle, A.; Scola, S.; Le, H.; Spencer, B.F.; LaFave, J.M. Dynamic Assessment of Timber Railroad Bridges Using Displacements. ASCE 2015, 20. [Google Scholar] [CrossRef]
- Robertson, I.N. Prediction of vertical deflections for a long-span prestressed concrete bridge structure. Eng. Struct. 2005, 27, 1820–1827. [Google Scholar] [CrossRef]
- Blake, A.; Winstanley, G.; Wilkinson, W. Deriving displacement from a 3 axis accelerometer. Proc. CGAT 2009, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Hester, D.; Brownjohn, J.; Bocian, M.; Xu, Y. Low cost bridge load test: Calculating bridge displacement from acceleration for load assessment calculations. Eng. Struct. 2017, 143, 358–374. [Google Scholar] [CrossRef] [Green Version]
- Citroni, R.; Di Paolo, F.; Livreri, P. Evaluation of an optical energy harvester for SHM application. AEU-Int. J. Electron. Commun. 2019, 111, 152918. [Google Scholar] [CrossRef]
- Lee, J.J.; Shinozuka, M. A vision-based system for remote sensing of bridge displacement. NDT E Int. 2006, 39, 425–431. [Google Scholar] [CrossRef]
- Chan, T.H.T.; Ashebo, D.B.; Tam, H.Y.; Yu, Y.; Lee, P.; Gracia, E.P. Vertical Displacement Measurements for Bridges Using Optical Fiber Sensors and CCD Cameras—A Preliminary Study. Struct. Health Monit. 2009, 8, 243–249. [Google Scholar] [CrossRef]
- Ribeiro, D.; Calçada, R.; Ferreira, J.; Martins, T. Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system. Eng. Struct. 2014, 75, 164–180. [Google Scholar] [CrossRef]
- Aliansyah, Z.; Shimasaki, K.; Senoo, T.; Ishii, I.; Umemoto, S. Single-Camera-Based Bridge Structural Displacement Measurement with Traffic Counting. Sensors 2021, 21, 4517. [Google Scholar] [CrossRef]
- Dorafshan, S.; Maguire, M. Bridge inspection: Human performance, unmanned aerial systems and automation. J. Civ. Struct. Health Monit. 2018, 8, 443–476. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.; Duque, L.; Wacker, J.P. Field Application of UAS-Based Bridge Inspection. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 72–81. [Google Scholar] [CrossRef]
- Xu, Y.; Brownjohn, J.M.W. Review of machine-vision based methodologies for displacement measurement in civil structures. J. Civ. Struct. Health Monit. 2018, 8, 91–110. [Google Scholar] [CrossRef] [Green Version]
- Wood, R.L.; Nasimi, M.; Yang, B.; Wittich, C.E.; Steelman, J.S.; Puckett, J.A.; Linzell, D.G.; Zhu, J.; Mohammadi, M.E. M107: Outdoor Laboratory and Testbed for Bridge Health; Department of Transportation: Lincoln, NE, USA, 2022. [Google Scholar]
- Wu, Z.; Chen, G.; Ding, Q.; Yuan, B.; Yang, X. Three-Dimensional Reconstruction-Based Vibration Measurement of Bridge Model Using UAVs. Appl. Sci. 2021, 11, 5111. [Google Scholar] [CrossRef]
- Xuan Mung, N.; Nguyen, N.P.; Pham, D.B.; Dao, N.N.; Hong, S.K. Synthesized Landing Strategy for Quadcopter to Land Precisely on a Vertically Moving Apron. Mathematics 2022, 10, 1328. [Google Scholar] [CrossRef]
- Xuan-Mung, N.; Nguyen, N.P.; Nguyen, T.; Pham, D.B.; Vu, M.T.; Ngoc, T.H.L.N.; Hong, S.K. Quadcopter Precision Landing on Moving Targets via Disturbance Observer-based Controller and Autonomous Landing Planner. IEEE Access 2022, 10, 83580–83590. [Google Scholar] [CrossRef]
- Carroll, S.; Satme, J.; Alkharusi, S.; Vitzilaios, N.; Downey, A.; Rizos, D. Drone-Based Vibration Monitoring and Assessment of Structures. Appl. Sci. 2021, 11, 8560. [Google Scholar] [CrossRef]
- Reagan, D.; Sabato, A.; Niezrecki, C. Unmanned aerial vehicle acquisition of three-dimensional digital image correlation measurements for structural health monitoring of bridges. In Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2017; SPIE: Bellingham, WA, USA, 2017; Volume 10169, pp. 68–77. [Google Scholar]
- Gillins, M.N.; Gillins, D.T.; Parrish, C. Cost-Effective Bridge Safety Inspections Using Unmanned Aircraft Systems (UAS). In Proceedings of the Geotechnical and Structural Engineering Congress 2016, Phoenix, AZ, USA, 14–17 February 2016; pp. 1931–1940. [Google Scholar] [CrossRef]
- Chen, S.-E.; Rice, C.; Boyle, C. Hauser Small-Format Aerial Photography for Highway-Bridge Monitoring. J. Perform. Constr. Facil. 2011, 25, 105–112. [Google Scholar] [CrossRef]
- Chan, B.; Anstice, D.; Pettigrew, T.; Saul, I. Photogrammetric modelling and drones for the effective inspection and management of major steel truss bridges: Case study. In Proceedings of the Austroads Bridge Conference 10th—2017, Melbourne, Australia, 3–6 April 2017. [Google Scholar]
- Metni, N.; Hamel, T. A UAV for bridge inspection: Visual servoing control law with orientation limits. Autom. Constr. 2007, 17, 3–10. [Google Scholar] [CrossRef]
- Yeum, C.M.; Dyke, S.J. Vision-Based Automated Crack Detection for Bridge Inspection. Comput. Aided Civ. Infrastruct. Eng. 2015, 30, 759–770. [Google Scholar] [CrossRef]
- Ham, Y.; Han, K.K.; Lin, J.J.; Golparvar-Fard, M. Visual monitoring of civil infrastructure systems via camera-equipped Unmanned Aerial Vehicles (UAVs): A review of related works. Vis. Eng. 2016, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhang, J. UAV-based bridge geometric shape measurement using automatic bridge component detection and distributed multi-view reconstruction. Autom. Constr. 2022, 140, 104376. [Google Scholar] [CrossRef]
- Khuc, T.; Nguyen, T.A.; Dao, H.; Catbas, F.N. Swaying displacement measurement for structural monitoring using computer vision and an unmanned aerial vehicle. Measurement 2020, 159, 107769. [Google Scholar] [CrossRef]
- Khadka, A.; Fick, B.; Afshar, A.; Tavakoli, M.; Baqersad, J. Non-contact vibration monitoring of rotating wind turbines using a semi-autonomous UAV. Mech. Syst. Signal Process. 2019, 138, 106446. [Google Scholar] [CrossRef]
- Yoon, H.; Shin, J.; Spencer, B.F., Jr. Structural displacement measurement using an unmanned aerial system. Comput. Aided Civ. Infrastruct. Eng. 2018, 33, 183–192. [Google Scholar] [CrossRef]
- Nasimi, R.; Moreu, F. A methodology for measuring the total displacements of structures using a laser–camera system. Comput. Civ.-Aided Infrastruct. Eng. 2021, 36, 421–437. [Google Scholar] [CrossRef]
- Nasimi, R.; Moreu, F. Development and Implementation of a Laser–Camera–UAV System to Measure Total Dynamic Transverse Displacement. J. Eng. Mech. 2021, 147, 04021045. [Google Scholar] [CrossRef]
- Nasimi, R.; Moreu, F.; Nasimi, M.; Wood, R. Developing Enhanced Unmanned Aerial Vehicle Sensing System for Practical Bridge Inspections Using Field Experiments. Transp. Res. Rec. J. Transp. Res. Board 2022, 2676, 514–522. [Google Scholar] [CrossRef]
- RSV-150. Remote Sensing Vibrometer. 2021. Available online: https://www.polytec.com/us/vibrometry/products/special-application-vibrometers/rsv-150-remote-sensing-vibrometer (accessed on 22 October 2022).
- Gimble Lock. Euler Angle Features. 2021. Available online: https://en.wikipedia.org/wiki/Gimbal_lock#Loss_of_a_degree_of_freedom_with_Euler_angles (accessed on 22 October 2022).
Experiment | Camera Frames | Frames to Analyze | Comments |
---|---|---|---|
Test 1 | 15,799 | 9113–13,033 | Some camera and laser data unavailable |
Test 2 | 16,315 | 9979–13,194 | Camera and laser data aligned |
Test 3 | 10,954 | NA (Not Applicable) | Laser data not available for analysis |
Test 4 | 14,951 | 8175–12,151 | Some camera and laser data unavailable |
Test 5 | 9249 | 3291–7419 | Camera and laser data aligned |
Experiment 2 | Experiment 5 | ||
---|---|---|---|
Peak (mm) | RMS Error (%) | Peak (mm) | RMS Error (%) |
31.75 | 22.09% | 26.79 | 33.70% |
73.24 | 13.76% | 47.96 | 20.03% |
116.58 | 15.13% | 52.98 | 14.17% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasimi, R.; Moreu, F.; Fricke, G.M. Sensor Equipped UAS for Non-Contact Bridge Inspections: Field Application. Sensors 2023, 23, 470. https://doi.org/10.3390/s23010470
Nasimi R, Moreu F, Fricke GM. Sensor Equipped UAS for Non-Contact Bridge Inspections: Field Application. Sensors. 2023; 23(1):470. https://doi.org/10.3390/s23010470
Chicago/Turabian StyleNasimi, Roya, Fernando Moreu, and G. Matthew Fricke. 2023. "Sensor Equipped UAS for Non-Contact Bridge Inspections: Field Application" Sensors 23, no. 1: 470. https://doi.org/10.3390/s23010470
APA StyleNasimi, R., Moreu, F., & Fricke, G. M. (2023). Sensor Equipped UAS for Non-Contact Bridge Inspections: Field Application. Sensors, 23(1), 470. https://doi.org/10.3390/s23010470