ECG-Free Heartbeat Detection in Seismocardiography Signals via Template Matching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Signals Pre-Processing
2.3. Template Matching
2.3.1. Template Selection
2.3.2. Normalized Cross-Correlation and Peaks Localization
2.3.3. Inter-Beat Intervals Estimation
2.4. Statistical Analyses
3. Results
3.1. NCC Signals with Case 1 Templates
3.2. NCC Signals with Case 2 Templates
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galli, A.; Montree, R.J.H.; Que, S.; Peri, E.; Vullings, R. An Overview of the Sensors for Heart Rate Monitoring Used in Extramural Applications. Sensors 2022, 22, 4035. [Google Scholar] [CrossRef] [PubMed]
- Hieronymi, U.; Kramme, R. Cardiovascular monitoring. In Springer Handbook of Medical Technology; Kramme, R., Hoffmann, K.P., Pozos, R.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 955–970. [Google Scholar] [CrossRef]
- Polley, C.; Jayarathna, T.; Gunawardana, U.; Naik, G.; Hamilton, T.; Andreozzi, E.; Bifulco, P.; Esposito, D.; Centracchio, J.; Gargiulo, G. Wearable Bluetooth Triage Healthcare Monitoring System. Sensors 2021, 21, 7586. [Google Scholar] [CrossRef]
- Van Ravenswaaij-Arts, C.M.; Kollée, L.A.; Hopman, J.C.; Stoelinga, G.B.; van Geijn, H.P. Heart rate variability. Ann. Intern. Med. 1993, 118, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Perret-Guillaume, C.; Joly, L.; Benetos, A. Heart Rate as a Risk Factor for Cardiovascular Disease. Prog. Cardiovasc. Dis. 2009, 52, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Kleiger, R.E.; Stein, P.K.; Bigger, J.T., Jr. Heart rate variability: Measurement and clinical utility. Ann. Noninvas. Electrocardiol. 2005, 10, 88–101. [Google Scholar] [CrossRef]
- Cygankiewicz, I.; Zareba, W. Chapter 31—Heart rate variability. In Handbook of Clinical Neurology; Buijs, R.M., Swaab, D.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 117, pp. 379–393. [Google Scholar] [CrossRef]
- Faust, O.; Hong, W.; Loh, H.W.; Xu, S.; Tan, R.S.; Chakraborty, S.; Barua, P.D.; Molinari, F.; Acharya, U.R. Heart rate variability for medical decision support systems: A review. Comput. Biol. Med. 2022, 145, 105407. [Google Scholar] [CrossRef]
- Hernando, D.; Roca, S.; Sancho, J.; Alesanco, Á.; Bailón, R. Validation of the Apple Watch for Heart Rate Variability Measurements during Relax and Mental Stress in Healthy Subjects. Sensors 2018, 18, 2619. [Google Scholar] [CrossRef]
- Böhm, M.; Reil, J.C.; Deedwania, P.; Kim, J.B.; Borer, J.S. Resting heart rate: Risk indicator and emerging risk factor in cardiovascular disease. Am. J. Med. 2015, 128, 219–228. [Google Scholar] [CrossRef]
- Stein, P.K.; Pu, Y. Heart rate variability, sleep and sleep disorders. Sleep Med. Rev. 2012, 16, 47–66. [Google Scholar] [CrossRef]
- Lundstrom, C.J.; Foreman, N.A.; Biltz, G. Practices and Applications of Heart Rate Variability Monitoring in Endurance Athletes. Int. J. Sport. Med. 2023, 44, 9–19. [Google Scholar] [CrossRef]
- Achten, J.; Jeukendrup, A.E. Heart rate monitoring: Applications and limitations. Sport. Med. 2003, 33, 517–538. [Google Scholar] [CrossRef]
- Zhu, J.; Ji, L.; Liu, C. Heart rate variability monitoring for emotion and disorders of emotion. Physiol. Meas. 2019, 40, 064004. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Sjörs Dahlman, A.; Karlsson, J.; Candefjord, S. Detecting driver fatigue using heart rate variability: A systematic review. Accid. Anal. Prev. 2022, 178, 106830. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.W.J. The origin of biopotentials. In Medical Instrumentation: Application and Design, 4th ed.; Webster, J.G., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 147–158. [Google Scholar]
- Nazeran, H. Electrocardiography, computers in. In Encyclopedia of Medical Devices and Instrumentation, 2nd ed.; Webster, J.G., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 34–51. [Google Scholar]
- Vieau, S.; Iaizzo, P.A. Basic ECG theory, 12-lead recordings and their interpretation. In Handbook of Cardiac Anatomy, Physiology and Devices, 3rd ed.; Iaizzo, P.A., Ed.; Springer: Cham, Switzerland, 2015; pp. 321–334. [Google Scholar]
- Berbari, E.J. Principles of electrocardiography. In Biomedical Engineering Handbook; Bronzino, J.D., Ed.; CRC Press: Boca Raton, FL, USA, 1999; pp. 231–240. [Google Scholar]
- Sattar, Y.; Chhabra, L. Electrocardiogram; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK549803/ (accessed on 7 April 2023).
- Luz, E.J.; Schwartz, W.R.; Cámara-Chávez, G.; Menotti, D. ECG-based heartbeat classification for arrhythmia detection: A survey. Comput. Methods Programs Biomed. 2016, 127, 144–164. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236. [Google Scholar] [CrossRef]
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1–R39. [Google Scholar] [CrossRef] [PubMed]
- Andreozzi, E.; Sabbadini, R.; Centracchio, J.; Bifulco, P.; Irace, A.; Breglio, G.; Riccio, M. Multimodal Finger PulseWave Sensing: Comparison of Forcecardiography and Photoplethysmography Sensors. Sensors 2022, 22, 7566. [Google Scholar] [CrossRef]
- Pereira, T.; Tran, N.; Gadhoumi, K.; Pelter, M.M.; Do, D.H.; Lee, R.J.; Colorado, R.; Meisel, K.; Hu, X. Photoplethysmography based atrial fibrillation detection: A review. NPJ Digit. Med. 2020, 3, 3. [Google Scholar] [CrossRef]
- Biswas, D.; Simões-Capela, N.; Van Hoof, C.; Van Helleputte, N. Heart Rate Estimation from Wrist-Worn Photoplethysmography: A Review. IEEE Sens. J. 2019, 19, 6560–6570. [Google Scholar] [CrossRef]
- Zhang, Z. Photoplethysmography-Based Heart Rate Monitoring in Physical Activities via Joint Sparse Spectrum Reconstruction. IEEE Trans. Biomed. Eng. 2015, 62, 1902–1910. [Google Scholar] [CrossRef]
- Ismail, S.; Akram, U.; Siddiqi, I. Heart rate tracking in photoplethysmography signals affected by motion artifacts: A review. EURASIP J. Adv. Signal. Process. 2021, 5, 5. [Google Scholar] [CrossRef]
- Gordon, J.W. On certain molar movements of the human body produced by the circulation of blood. J. Anat. Physiol. 1877, 11, 533–536. [Google Scholar] [PubMed]
- Knoop, A.A. Experimental investigations on ultra-low frequency displacement ballistocardiography: NASA TT F-269. In NASA Contractor Report—NASA CR; National Aeronautics and Space Administration: Washington, DC, USA, 1965; pp. 1–107. [Google Scholar]
- Starr, I. The relation of the ballistocardiogram to cardiac function. Am. J. Cardiol. 1958, 2, 737–747. [Google Scholar] [CrossRef]
- Burger, H.C.; Noordergraaf, A. Physical basis of ballistocardiography. III. Am. Heart J. 1956, 51, 179–185. [Google Scholar] [CrossRef]
- Sadek, I.; Biswas, J.; Abdulrazak, B. Ballistocardiogram signal processing: A review. Health Inf. Sci. Syst. 2019, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Inan, O.T. Recent advances in cardiovascular monitoring using ballistocardiography. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August–1 September 2012; pp. 5038–5041. [Google Scholar] [CrossRef]
- Rappaport, M.B.; Sprague, H.B. The graphic registration of the normal heart sounds. Am. Heart J. 1942, 23, 591–623. [Google Scholar] [CrossRef]
- Dimond, E.G.; Benchimol, A. Phonocardiography. Calif. Med. 1961, 94, 139–146. [Google Scholar]
- Ismail, S.; Siddiqi, I.; Akram, U. Localization and classification of heart beats in phonocardiography signals—A comprehensive review. EURASIP J. Adv. Signal. Process. 2018, 2018, 26. [Google Scholar] [CrossRef]
- Giordano, N.; Knaflitz, M. A Novel Method for Measuring the Timing of Heart Sound Components through Digital Phonocardiography. Sensors 2019, 19, 1868. [Google Scholar] [CrossRef]
- Zanetti, J.; Salerno, D. Seismocardiography: A new technique for recording cardiac vibrations: Concept, method, and initial observations. J. Cardiovasc. Technol. 1990, 9, 2. [Google Scholar]
- Inan, O.T.; Migeotte, P.F.; Park, K.S.; Etemadi, M.; Tavakolian, K.; Casanella, R.; Zanetti, J.; Tank, J.; Funtova, I.; Prisk, G.K.; et al. Ballistocardiography and Seismocardiography: A Review of Recent Advances. IEEE J. Biomed. Health Inform. 2015, 19, 1414–1427. [Google Scholar] [CrossRef] [PubMed]
- Taebi, A.; Solar, B.E.; Bomar, A.J.; Sandler, R.H.; Mansy, H.A. Recent Advances in Seismocardiography. Vibration 2019, 2, 64–86. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, J.M.; Tavakolian, K. Seismocardiography: Past, present and future. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 7004–7007. [Google Scholar] [CrossRef]
- Crow, R.S.; Hannan, P.; Jacobs, D.; Hedquist, L.; Salerno, D.M. Relationship between Seismocardiogram and Echocardiogram for Events in the Cardiac Cycle. Am. J. Noninvas. Cardiol. 1994, 8, 39–46. [Google Scholar] [CrossRef]
- Khosrow-Khavar, F.; Tavakolian, K.; Blaber, A.; Menon, C. Automatic and Robust Delineation of the Fiducial Points of the Seismocardiogram Signal for Noninvasive Estimation of Cardiac Time Intervals. IEEE Trans. Biomed. Eng. 2017, 64, 1701–1710. [Google Scholar] [CrossRef]
- Di Rienzo, M.; Vaini, E.; Castiglioni, P.; Merati, G.; Meriggi, P.; Parati, G.; Faini, A.; Rizzo, F. Wearable seismocardiography: Towards a beat-by-beat assessment of cardiac mechanics in ambulant subjects. Auton. Neurosci. 2013, 178, 50–59. [Google Scholar] [CrossRef]
- Laurin, A.; Blaber, A.; Tavakolian, K. Seismocardiograms return valid heart rate variability indices. Comput. Cardiol. 2013, 2013, 413–416. [Google Scholar]
- Jafari Tadi, M.; Lehtonen, E.; Saraste, A.; Tuominen, J.; Koskinen, J.; Teräs, M.; Airaksinen, J.; Pänkäälä, M.; Koivisto, T. Gyrocardiography: A New Non-invasive Monitoring Method for the Assessment of Cardiac Mechanics and the Estimation of Hemodynamic Variables. Sci. Rep. 2017, 7, 6823. [Google Scholar] [CrossRef]
- Sieciński, S.; Kostka, P.S.; Tkacz, E.J. Gyrocardiography: A Review of the Definition, History, Waveform Description and Applications. Sensors 2020, 20, 6675. [Google Scholar] [CrossRef]
- Hossein, A.; Mirica, D.C.; Rabineau, J.; Del Rio, J.I.J.; Morra, S.; Gorlier, D.; Nonclercq, A.; van de Borne, P.; Migeotte, P.F. Accurate Detection of Dobutamine-induced Haemodynamic Changes by Kino-Cardiography: A Randomised Double-Blind Placebo-Controlled Validation Study. Sci. Rep. 2019, 9, 10479. [Google Scholar] [CrossRef]
- Hossein, A.; Rabineau, J.; Gorlier, D.; Del Rio, J.I.J.; van de Borne, P.; Migeotte, P.F.; Nonclercq, A. Kinocardiography Derived from Ballistocardiography and Seismocardiography Shows High Repeatability in Healthy Subjects. Sensors 2021, 21, 815. [Google Scholar] [CrossRef]
- Andreozzi, E.; Fratini, A.; Esposito, D.; Naik, G.; Polley, C.; Gargiulo, G.D.; Bifulco, P. Forcecardiography: A Novel Technique to Measure Heart Mechanical Vibrations onto the Chest Wall. Sensors 2020, 20, 3885. [Google Scholar] [CrossRef]
- Andreozzi, E.; Gargiulo, G.D.; Esposito, D.; Bifulco, P. A Novel Broadband Forcecardiography Sensor for Simultaneous Monitoring of Respiration, Infrasonic Cardiac Vibrations and Heart Sounds. Front. Physiol. 2021, 12, 725716. [Google Scholar] [CrossRef] [PubMed]
- Andreozzi, E.; Centracchio, J.; Punzo, V.; Esposito, D.; Polley, C.; Gargiulo, G.D.; Bifulco, P. Respiration Monitoring via Forcecardiography Sensors. Sensors 2021, 21, 3996. [Google Scholar] [CrossRef]
- Centracchio, J.; Andreozzi, E.; Esposito, D.; Gargiulo, G.D.; Bifulco, P. Detection of Aortic Valve Opening and Estimation of Pre-Ejection Period in Forcecardiography Recordings. Bioengineering 2022, 9, 89. [Google Scholar] [CrossRef] [PubMed]
- Andreozzi, E.; Centracchio, J.; Esposito, D.; Bifulco, P. A Comparison of Heart Pulsations Provided by Forcecardiography and Double Integration of Seismocardiogram. Bioengineering 2022, 9, 167. [Google Scholar] [CrossRef]
- Centracchio, J.; Andreozzi, E.; Esposito, D.; Gargiulo, G.D. Respiratory-Induced Amplitude Modulation of Forcecardiography Signals. Bioengineering 2022, 9, 444. [Google Scholar] [CrossRef]
- Centracchio, J.; Esposito, D.; Gargiulo, G.D.; Andreozzi, E. Changes in Forcecardiography Heartbeat Morphology Induced by Cardio-Respiratory Interactions. Sensors 2022, 22, 9339. [Google Scholar] [CrossRef] [PubMed]
- D’Mello, Y.; Skoric, J.; Xu, S.; Roche, P.J.R.; Lortie, M.; Gagnon, S.; Plant, D.V. Real-Time Cardiac Beat Detection and Heart Rate Monitoring from Combined Seismocardiography and Gyrocardiography. Sensors 2019, 19, 3472. [Google Scholar] [CrossRef] [PubMed]
- Dehkordi, P.; Tavakolian, K.; Tadi, M.J.; Zakeri, V.; Khosrow-Khavar, F. Investigating the estimation of cardiac time intervals using gyrocardiography. Physiol. Meas. 2020, 41, 055004. [Google Scholar] [CrossRef] [PubMed]
- Laurin, A.; Khosrow-Khavar, F.; Blaber, A.P.; Tavakolian, K. Accurate and consistent automatic seismocardiogram annotation without concurrent ECG. Physiol. Meas. 2016, 37, 1588–1604. [Google Scholar] [CrossRef] [PubMed]
- Jafari Tadi, M.; Lehtonen, E.; Hurnanen, T.; Koskinen, J.; Eriksson, J.; Pänkäälä, M.; Teräs, M.; Koivisto, T. A real-time approach for heart rate monitoring using a Hilbert transform in seismocardiograms. Physiol. Meas. 2016, 37, 1885–1909. [Google Scholar] [CrossRef] [PubMed]
- Sieciński, S.; Kostka, P. Determining heart rate beat-to-beat from smartphone seismocardiograms: Preliminary studies. In Proceedings of the Innovations in Biomedical Engineering Conference, Zabrze, Poland, 19–20 October 2017; Advances in Intelligent Systems and Computing. Gzik, M., Tkacz, E., Paszenda, Z., Piętka, E., Eds.; Springer: Cham, Switzerland, 2018; 623, pp. 133–140. [Google Scholar] [CrossRef]
- Kaisti, M.; Jafari Tadi, M.; Lahdenoja, O.; Hurnanen, T.; Saraste, A.; Pänkäälä, M.; Koivisto, T. Stand-Alone Heartbeat Detection in Multidimensional Mechanocardiograms. IEEE Sens. J. 2019, 19, 234–242. [Google Scholar] [CrossRef]
- Luu, L.; Dinh, A. Using moving average method to recognize systole and diastole on seismocardiogram without ECG signal. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Honolulu, HI, USA, 18–21 July 2018; pp. 3796–3799. [Google Scholar] [CrossRef]
- Choudhary, T.; Sharma, L.N.; Bhuyan, M.K. Automatic Detection of Aortic Valve Opening Using Seismocardiography in Healthy Individuals. IEEE J. Biomed. Health Inform. 2019, 23, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Sieciński, S.; Tkacz, E.J.; Kostka, P.S. Comparison of HRV indices obtained from ECG and SCG signals from CEBS database. Biomed. Eng. Online 2019, 18, 69. [Google Scholar] [CrossRef] [PubMed]
- Erfianto, B.; Rizal, A.; Suryani, V. Comparison of Seismocardiography Based Heart Rate Measurement Method. J. Southwest. Jiaotong Univ. 2020, 55, 1–15. [Google Scholar] [CrossRef]
- Xia, Z.; Shandhi, M.M.H.; Li, Y.; Inan, O.T.; Zhang, Y. The Delineation of Fiducial Points for Non-Contact Radar Seismocardiogram Signals without Concurrent ECG. IEEE J. Biomed. Health Inform. 2021, 25, 1031–1040. [Google Scholar] [CrossRef]
- Mora, N.; Cocconcelli, F.; Matrella, G.; Ciampolini, P. Fully Automated Annotation of Seismocardiogram for Noninvasive Vital Sign Measurements. IEEE Trans. Instrum. Meas. 2020, 69, 1241–1250. [Google Scholar] [CrossRef]
- García-González, M.A.; Argelagós-Palau, A.; Fernández-Chimeno, M.; Ramos-Castro, J. A comparison of heartbeat detectors for the seismocardiogram. In Proceedings of the Computing in Cardiology 2013, Zaragoza, Spain, 22–25 September 2013; pp. 461–464. [Google Scholar]
- Ferdinando, H.; Seppälä, E.; Myllylä, T. Discrete Wavelet Transforms-Based Analysis of Accelerometer Signals for Continuous Human Cardiac Monitoring. Appl. Sci. 2021, 11, 12072. [Google Scholar] [CrossRef]
- Choudhary, T.; Das, M.; Sharma, L.N.; Bhuyan, M.K. Analyzing seismocardiographic approach for heart rate variability measurement. Biomed. Signal. Process. Control. 2021, 68, 102793. [Google Scholar] [CrossRef]
- Scarpetta, M.; Spadavecchia, M.; Andria, G.; Ragolia, M.A.; Giaquinto, N. Accurate simultaneous measurement of heartbeat and respiratory intervals using a smartphone. J. Instrum. 2022, 17, P07020. [Google Scholar] [CrossRef]
- Wahlstrom, J.; Skog, I.; Handel, P.; Khosrow-Khavar, F.; Tavakolian, K.; Stein, P.K.; Nehorai, A. A Hidden Markov Model for Seismocardiography. IEEE Trans. Biomed. Eng. 2017, 64, 2361–2372. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, H.K.; Sahoo, P.K. Towards Automatic and Fast Annotation of Seismocardiogram Signals Using Machine Learning. IEEE Sens. J. 2020, 20, 2578–2589. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, W.; Zhu, W.; Ma, G.; Chen, X.; Wang, L. Beat-to-beat heart rate detection based on seismocardiogram using BiLSTM network. In Proceedings of the IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Shenyang, China, 20–22 October 2021; pp. 1503–1507. [Google Scholar] [CrossRef]
- Duraj, K.M.; Sieciński, S.; Doniec, R.J.; Piaseczna, N.J.; Kostka, P.S.; Tkacz, E.J. Heartbeat detection in seismocardiograms with semantic segmentation. In Proceedings of the 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 662–665. [Google Scholar] [CrossRef]
- Işilay Zeybek, Z.M.; Racca, V.; Pezzano, A.; Tavanelli, M.; Di Rienzo, M. Can Seismocardiogram Fiducial Points Be Used for the Routine Estimation of Cardiac Time Intervals in Cardiac Patients? Front. Physiol. 2022, 13, 825918. [Google Scholar] [CrossRef]
- Centracchio, J.; Muto, V. Heartbeats localization in forcecardiography signals via template matching. In Proceedings of the E-Health and Bioengineering Conference (EHB), Iasi, Romania, 17–18 November 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Shin, J.H.; Choi, B.H.; Lim, Y.G.; Jeong, D.U.; Park, K.S. Automatic ballistocardiogram (BCG) beat detection using a template matching approach. In Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Vancouver, BC, Canada, 20–25 August 2008; pp. 1144–1446. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chen, H.H.; Chen, T.C.; Chen, L.G. Robust heart rate measurement with phonocardiogram by on-line template extraction and matching. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Boston, MA, USA, 30 August–3 September 2011; pp. 1957–1960. [Google Scholar] [CrossRef]
- Yang, C.; Fan, F.; Aranoff, N.; Green, P.; Li, Y.; Liu, C.; Tavassolian, N. An Open-Access Database for the Evaluation of Cardio-Mechanical Signals from Patients with Valvular Heart Diseases. Front. Physiol. 2021, 12, 750221. [Google Scholar] [CrossRef] [PubMed]
- Sedghamiz, H. BioSigKit: A Matlab Toolbox and Interface for Analysis of BioSignals. J. Open. Source Softw. 2018, 3, 671. [Google Scholar] [CrossRef]
- Altman, D.G.; Bland, J.M. Measurement in medicine: The analysis of method comparison studies. Statistician 1983, 32, 307–317. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Ran, K. Bland-Altman and Correlation Plot, MATLAB Central File Exchange. 2020. Available online: https://www.mathworks.com/matlabcentral/fileexchange/45049-bland-altman-and-correlation-plot (accessed on 15 March 2023).
Patient ID # | Reason for Exclusion |
---|---|
CP-03, CP-06, CP-17, CP-18, CP-24, CP-25, CP-29, CP-31, CP-35, CP-46, CP-50, CP-51, CP-54, CP-62, CP-67, UP-02, UP-03, UP-05, UP-19, UP-22, UP-25, UP-26 | Poor SCG signal quality |
UP-28 | Simultaneous ECG signal not acquired |
Case | Description | Typical Template Waveform |
---|---|---|
1 | The template starts from 2–3 oscillations before the systolic peak (highest local maximum), where the amplitude of the oscillations is significantly reduced with respect to the systolic peak amplitude; the template ends just after the last oscillation of the diastolic complex. | |
2 | The template starts and ends at about 1–2 oscillations before and after the highest systolic peak. |
Patient ID # | R-Peaks | NCC Peaks | FP | FN | DE | Compared Inter-Beat Intervals |
---|---|---|---|---|---|---|
CP-01 | 448 | 448 | 0 | 0 | 0 | 447 |
CP-05 | 509 | 507 | 3 | 5 | 8 | 487 |
CP-08 | 544 | 538 | 0 | 6 | 18 | 502 |
CP-12 | 423 | 433 | 14 | 4 | 13 | 388 |
CP-15 | 630 | 623 | 0 | 7 | 3 | 610 |
CP-20 | 391 | 391 | 1 | 1 | 0 | 388 |
CP-21 | 247 | 247 | 2 | 2 | 1 | 241 |
CP-27 | 130 | 130 | 0 | 0 | 0 | 129 |
CP-28 | 238 | 237 | 0 | 1 | 5 | 225 |
CP-30 | 523 | 510 | 0 | 13 | 2 | 498 |
CP-33 | 449 | 456 | 12 | 5 | 12 | 417 |
CP-34 | 462 | 460 | 4 | 6 | 4 | 444 |
CP-36 | 386 | 377 | 8 | 17 | 101 | 166 |
CP-39 | 518 | 518 | 0 | 0 | 8 | 504 |
CP-41 | 349 | 344 | 1 | 6 | 2 | 332 |
CP-44 | 321 | 320 | 2 | 3 | 0 | 314 |
CP-45 | 357 | 343 | 0 | 14 | 17 | 303 |
CP-47 | 537 | 522 | 6 | 21 | 11 | 476 |
CP-49 | 451 | 457 | 11 | 5 | 47 | 353 |
CP-53 | 562 | 561 | 0 | 1 | 0 | 559 |
CP-57 | 507 | 506 | 0 | 1 | 5 | 495 |
CP-58 | 525 | 524 | 0 | 1 | 1 | 520 |
CP-59 | 405 | 406 | 1 | 0 | 0 | 404 |
CP-60 | 512 | 503 | 0 | 9 | 1 | 493 |
CP-61 | 397 | 403 | 6 | 0 | 1 | 395 |
CP-63 | 610 | 608 | 0 | 2 | 0 | 605 |
CP-64 | 382 | 391 | 9 | 0 | 1 | 379 |
CP-65 | 369 | 366 | 0 | 3 | 1 | 360 |
CP-66 | 468 | 468 | 1 | 1 | 0 | 465 |
CP-68 | 327 | 330 | 23 | 20 | 32 | 231 |
CP-69 | 587 | 585 | 0 | 2 | 0 | 582 |
CP-70 | 422 | 412 | 3 | 13 | 33 | 338 |
UP-04 | 258 | 251 | 5 | 12 | 2 | 233 |
UP-06 | 458 | 400 | 1 | 59 | 28 | 312 |
UP-07 | 376 | 373 | 1 | 4 | 2 | 365 |
UP-08 | 257 | 256 | 0 | 1 | 1 | 252 |
UP-09 | 286 | 278 | 0 | 8 | 0 | 273 |
UP-10 | 165 | 157 | 4 | 12 | 2 | 136 |
UP-13 | 106 | 93 | 0 | 13 | 1 | 84 |
UP-14 | 340 | 338 | 1 | 3 | 4 | 325 |
UP-15 | 214 | 189 | 0 | 25 | 0 | 168 |
UP-16 | 221 | 214 | 1 | 8 | 18 | 172 |
UP-18 | 350 | 349 | 0 | 1 | 1 | 345 |
UP-20 | 617 | 615 | 0 | 2 | 2 | 608 |
UP-21 | 305 | 305 | 0 | 0 | 2 | 300 |
UP-23 | 565 | 567 | 2 | 0 | 0 | 564 |
UP-24 | 349 | 340 | 2 | 11 | 9 | 311 |
UP-27 | 269 | 283 | 16 | 2 | 21 | 224 |
UP-29 | 146 | 142 | 0 | 4 | 1 | 136 |
UP-30 | 228 | 244 | 16 | 0 | 0 | 227 |
Total | 19,496 | 19,318 | 156 | 334 | 421 | 18,085 |
Patient ID # | R-Peaks | NCC Peaks | FP | FN | DE | Compared Inter-Beat Intervals |
---|---|---|---|---|---|---|
CP-02 | 651 | 643 | 18 | 26 | 19 | 571 |
CP-04 | 661 | 654 | 1 | 8 | 46 | 556 |
CP-07 | 451 | 453 | 3 | 1 | 5 | 441 |
CP-09 | 364 | 342 | 15 | 37 | 105 | 139 |
CP-10 | 506 | 505 | 63 | 64 | 113 | 213 |
CP-11 | 656 | 662 | 26 | 20 | 56 | 525 |
CP-13 | 837 | 829 | 0 | 8 | 5 | 814 |
CP-14 | 472 | 477 | 36 | 31 | 163 | 157 |
CP-16 | 355 | 360 | 15 | 10 | 13 | 312 |
CP-19 | 484 | 493 | 18 | 9 | 30 | 414 |
CP-22 | 610 | 595 | 16 | 31 | 51 | 466 |
CP-23 | 235 | 225 | 0 | 10 | 28 | 172 |
CP-26 | 389 | 381 | 5 | 13 | 5 | 353 |
CP-32 | 527 | 486 | 38 | 79 | 95 | 225 |
CP-37 | 342 | 335 | 55 | 62 | 90 | 104 |
CP-38 | 406 | 420 | 18 | 4 | 46 | 309 |
CP-40 | 509 | 505 | 26 | 30 | 233 | 114 |
CP-42 | 346 | 340 | 27 | 33 | 41 | 220 |
CP-43 | 460 | 478 | 37 | 19 | 95 | 266 |
CP-48 | 637 | 626 | 16 | 27 | 50 | 500 |
CP-52 | 728 | 532 | 0 | 196 | 38 | 298 |
CP-55 | 793 | 602 | 15 | 206 | 248 | 127 |
CP-56 | 742 | 693 | 15 | 61 | 145 | 409 |
UP-01 | 239 | 241 | 20 | 18 | 31 | 154 |
UP-11 | 417 | 414 | 17 | 20 | 54 | 305 |
UP-12 | 339 | 347 | 23 | 15 | 64 | 208 |
UP-17 | 613 | 603 | 1 | 11 | 6 | 583 |
Total | 13,769 | 13,241 | 524 | 1049 | 1875 | 8955 |
Template Case | Compared Inter-Beat Intervals | R2 | Slope | Intercept (ms) | Bias | p-Value | LoA (ms) | Sensitivity (%) | PPV (%) |
---|---|---|---|---|---|---|---|---|---|
1 | 18,085 | >0.999 | 0.997 | 2.80 | NS | 0.36 | ±7.8 | 96 | 97 |
2 | 8955 | >0.99 | 0.990 | 7.62 | NS | 0.15 | ±19 | 79 | 82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Centracchio, J.; Parlato, S.; Esposito, D.; Bifulco, P.; Andreozzi, E. ECG-Free Heartbeat Detection in Seismocardiography Signals via Template Matching. Sensors 2023, 23, 4684. https://doi.org/10.3390/s23104684
Centracchio J, Parlato S, Esposito D, Bifulco P, Andreozzi E. ECG-Free Heartbeat Detection in Seismocardiography Signals via Template Matching. Sensors. 2023; 23(10):4684. https://doi.org/10.3390/s23104684
Chicago/Turabian StyleCentracchio, Jessica, Salvatore Parlato, Daniele Esposito, Paolo Bifulco, and Emilio Andreozzi. 2023. "ECG-Free Heartbeat Detection in Seismocardiography Signals via Template Matching" Sensors 23, no. 10: 4684. https://doi.org/10.3390/s23104684
APA StyleCentracchio, J., Parlato, S., Esposito, D., Bifulco, P., & Andreozzi, E. (2023). ECG-Free Heartbeat Detection in Seismocardiography Signals via Template Matching. Sensors, 23(10), 4684. https://doi.org/10.3390/s23104684