Non-Contact Monitoring of Fetal Movement Using Abdominal Video Recording
Abstract
:1. Introduction
2. Materials and Methods
2.1. Abdominal Video Recording
2.2. Fetal Movement Signal Acquisition
2.2.1. Maternal Abdominal Region Detection
2.2.2. Optical Flow Color-Coding
2.2.3. H and S Signals Generation and Preprocessing
2.2.4. H and S Signals Decomposition
2.2.5. Determination of Fetal Movement Signal
2.3. Calculation of Fetal Movement Parameters Using Fetal Movement Signal
2.3.1. Recognition of Fetal Movement Spike
2.3.2. Calculation of Fetal Movement Parameters
2.4. Evaluation of the Performance of the Proposed Method
3. Results
3.1. Comparison of the Detection Result
3.2. Bland–Altman Analysis of Fetal Movement Parameters
3.3. Comparison of FM Parameters between Gestational Weeks
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stanger, J.J.; Horey, D.; Hooker, L.; Jenkins, M.J.; Custovic, E. Fetal movement measurement and technology: A narrative review. IEEE Access 2017, 5, 16747–16756. [Google Scholar] [CrossRef]
- Sherer, D.M.; Spong, C.Y.; Minior, V.K.; Salafia, C.M. Decreased amniotic fluid volume at <32 weeks of gestation is associated with decreased fetal movement. Am. J. Perinatol. 1996, 13, 479–482. [Google Scholar]
- Reddy, U.M. Prediction and prevention of recurrent stillbirth. Obstet. Gynecol. 2007, 110, 1151–1164. [Google Scholar] [CrossRef]
- Abeywardena, C.L.; Vanheusden, F.J.; Walker, K.F.; Arm, R.; Zhang, Q.M. Fetal movement counting using optical fibre sensors. Sensors 2021, 21, 48. [Google Scholar] [CrossRef] [PubMed]
- Nowlan, N.C. Biomechanics of foetal movement. Eur. Cells Mater. 2015, 29, 1–21. [Google Scholar] [CrossRef]
- Gardosi, J.; Madurasinghe, V.; Williams, M.; Malik, A.; Francis, A. Maternal and fetal risk factors for stillbirth: Population based study. BMJ. 2013, 346, f108. [Google Scholar] [CrossRef]
- Serena, C.; Marchetti, G.; Rambaldi, M.P.; Ottanelli, S.; Di Tommaso, M.; Avagliano, L.; Pieralli, A.; Mello, G.; Mecacci, F. Stillbirth and fetal growth restriction. J. Matern.-Fetal Neonatal Med. 2013, 26, 16–20. [Google Scholar] [CrossRef]
- Hantoushzadeh, S.; Rashidi, F.; Hassanzadeh, G.; Sereshki, Z.K.; Eshraghi, N.; Jamali, M.; Ghaemi, M. Could the Increase in Fetal Movement Be a Sign of the Imminent Fetal Demise? A Case Report. Fertil. Gynecol. Androl. 2022, 2, 1–4. [Google Scholar] [CrossRef]
- Froen, J.F.; Heazell, A.E.P.; Tveit, J.V.H.; Saastad, E.; Fretts, R.C.; Flenady, V. Fetal movement assessment. Semin. Perinatol. 2008, 32, 243–246. [Google Scholar] [CrossRef]
- Hijazi, Z.R.; East, C.E. Factors affecting maternal perception of fetal movement. Obstet. Gynecol. Surv. 2009, 64, 489–497. [Google Scholar] [CrossRef]
- Lai, J.; Nowlan, N.C.; Vaidyanathan, R.; Shaw, C.J.; Lees, C.C. Fetal movements as a predictor of health. Acta Obstet. Gynecol. Scand. 2016, 95, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Rooijakkers, M.J.; Rabotti, C.; de Lau, H.; Oei, S.G.; Bergmans, J.W.; Mischi, M. Feasibility study of a new method for low-complexity fetal movement detection from abdominal ECG recordings. IEEE J. Biomed. Health 2015, 20, 1361–1368. [Google Scholar] [CrossRef]
- Liang, S.S.; Peng, J.S.; Xu, Y. Passive fetal movement signal detection system based on intelligent sensing technology. J. Healthc. Eng. 2021, 2021, 1745292. [Google Scholar] [CrossRef] [PubMed]
- Haar, G. Ultrasonic imaging: Safety considerations. Interface Focus 2011, 1, 686–697. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, S.W.; Kainz, B.; Shelmerdine, S.C.; Hajnal, J.V.; Rutherford, M.A.; Arthurs, O.J.; Phillips, A.T.M.; Nowlan, N.C. Stresses and strains on the human fetal skeleton during development. J. R. Soc. Interface 2018, 15, 20170593. [Google Scholar] [CrossRef] [PubMed]
- Ansourian, M.N.; Dripp, J.H.; Jordan, J.R.; Beattie, G.J.; Boddy, K. A transducer for detecting foetal breathing movements using PVDF film. Physiol. Meas. 1993, 14, 365–372. [Google Scholar] [CrossRef]
- Berger, C.S.; Trigg, P. The measurement of fetal movement using a strain-gauge transducer. IEEE Trans. Biomed. Eng. 1981, 28, 788–790. [Google Scholar] [CrossRef]
- Ryo, E.; Kamata, H. Fetal movement counting at home with a fetal movement acceleration measurement recorder: A preliminary report. J. Matern. Fetal Neonatal Med. 2012, 25, 2629–2632. [Google Scholar] [CrossRef]
- Goovaerts, H.G.; Rompelman, O.; Vangeijn, H.P. A transducer for recording fetal movements and sounds based on an inductive principle. Clin. Phys. Physiol. Meas. 1989, 10, 61–65. [Google Scholar] [CrossRef]
- Vullings, R.; Mischi, M.; Oei, S.G.; Bergmans, J.W.M. Novel Bayesian vectorcardiographic loop alignment for improved monitoring of ECG and fetal movement. IEEE Trans. Biomed. Eng. 2013, 60, 1580–1588. [Google Scholar] [CrossRef]
- Cobos-Torres, J.C.; Abderrahim, M.; Martinez-Orgado, J. Non-contact, simple neonatal monitoring by photoplethysmography. Sensors 2018, 18, 4362. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.L.; Li, W.; Chen, C.; Wang, Z.Y.; Chen, W. An unobtrusive and non-contact method for respiratory measurement with respiratory region detecting algorithm based on depth images. IEEE Access 2019, 7, 8300–8315. [Google Scholar] [CrossRef]
- Massaroni, C.; Lo Presti, D.; Formica, D.; Silvestri, S.; Schena, E. Non-contact monitoring of breathing pattern and respiratory rate via RGB signal measurement. Sensors 2019, 19, 2758. [Google Scholar] [CrossRef] [PubMed]
- Karayiannis, N.B.; Varughese, B.; Tao, G.Z.; Frost, J.D.; Wise, M.S.; Mizrahi, E.M. Quantifying motion in video recordings of neonatal seizures by regularized optical flow methods. IEEE Trans. Image Process. 2005, 14, 890–903. [Google Scholar] [CrossRef] [PubMed]
- Koolen, N.; Decroupet, O.; Dereymaeker, A.; Jansen, K.; Vervisch, J.; Matic, V.; Vanrumste, B.; Naulaers, G.; Van Huffel, S.; De Vos, M. Automated respiration detection from neonatal video data. In Proceedings of the International Conference on Pattern Recognition Applications and Methods, Lisbon, Portugal, 10 January 2015. [Google Scholar]
- Sun, Y.; Wang, W.J.; Long, X.; Meftah, M.; Tan, T.; Shan, C.F.; Aarts, R.M.; de With, P.H.N. Respiration monitoring for premature neonates in NICU. Appl. Sci. 2019, 9, 5246. [Google Scholar] [CrossRef]
- Hsu, R.L.; Abdel-Mottaleb, M.; Jain, A.K. Face detection in color images. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 696–706. [Google Scholar]
- Florack, L.; Niessen, W.; Nielsen, M. The intrinsic structure of optic flow incorporating measurement duality. Int. J. Comput. Vis. 1998, 27, 263–286. [Google Scholar] [CrossRef]
- Baker, S.; Scharstein, D.; Lewis, J.P.; Roth, S.; Black, M.J.; Szeliski, R. A database and evaluation methodology for optical flow. In Proceedings of the 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–21 October 2007. [Google Scholar]
- Zhao, L.C.; Wu, W.; Zeng, X.Y.; Koehl, L.; Tartare, G. A new method for fetal movement detection using an intelligent T-shirt embedded physiological sensors. In Proceedings of the 16th International Conference on Communication Technology (ICCT), Hangzhou, China, 18–20 October 2015. [Google Scholar]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Dong, Z.; Zhang, K.Z.; Shu, S.B.; Lu, F.C.; Chen, J.J. Illumination variation-resistant video-based heart rate monitoring using LAB color space. Opt. Lasers Eng. 2021, 136, 106328. [Google Scholar] [CrossRef]
- Avci, R.; Wilson, J.D.; Escalona-Vargas, D.; Eswaran, H. Tracking fetal movement through source localization from multisensor magnetocardiographic recordings. IEEE J. Biomed. Health Inform. 2018, 22, 758–765. [Google Scholar] [CrossRef]
- Layeghy, S.; Azemi, G.; Colditz1, P.; Boashash, B. Classification of fetal movement accelerometry through time-frequency features. In Proceedings of the 8th International Conference on Signal Processing and Communication Systems, Gold Coast, Australia, 15–17 December 2014. [Google Scholar]
- Khlif, M.S.; Boashash, B.; Layeghy, S.; Ben-Jabeur, T.; Mesbah, M.; East, C.; Colditz, P. Time-frequency characterization of tri-axial accelerometer data for fetal movement detection. In Proceedings of the IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Bilbao, Spain, 14–17 December 2011. [Google Scholar]
- Khlif, M.S.; Boashash, B.; Layeghy, S.; Ben-Jabeur, T.; Colditz, P.; East, C. A passive DSP approach to fetal movement detection for monitoring fetal health. In Proceedings of the 11th International Conference on Information Sciences, Signal Processing and Their Applications (ISSPA), Montreal, QC, Canada, 2–5 July 2012. [Google Scholar]
- Lai, J.; Woodward, R.; Alexandrov, Y.; Munnee, Q.A.; Lees, C.C.; Vaidyanathan, R.; Nowlan, N.C. Performance of a wearable acoustic system for fetal movement discrimination. PLoS ONE 2018, 13, e0195728. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.; Witte, R.; Swiderski, L.; Zollkau, J.; Schneider, U.; Hoyer, D. Advanced automatic detection of fetal body movements from multichannel magnetocardiographic signals. Physiol. Meas. 2019, 40, 085005. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.S.; Li, X.D.; Wei, S.Y.; Liu, X.L. Fetal heart rate baseline estimation with analysis of fetal movement signal. Bio-Med. Mater. Eng. 2014, 24, 3763–3769. [Google Scholar] [CrossRef] [PubMed]
- Natale, R.; Nasello-Paterson, C.; Turliuk, R. Longitudinal measurements of fetal breathing, body movements, heart rate, and heart rate accelerations and decelerations at 24 to 32 weeks of gestation. Am. J. Obstet. Gynecol. 1985, 151, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Roodenburg, P.J.; Wladimiroff, J.W.; Vanes, A.; Prechtl, H.F.R. Classification and quantitative aspects of fetal movement during the second half of normal pregnancy. Early Hum. Dev. 1991, 25, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Sparling, J.W.; Van Tol, J.; Chescheir, N.C. Fetal and neonatal hand movement. Phys. Ther. Rehabil. J. 1999, 79, 24–39. [Google Scholar] [CrossRef]
- Ten Hof, J.; Nijhuis, I.J.M.; Mulder, E.J.H.; Nijhuis, J.G.; Narayan, H.; Taylor, D.J.; Westers, P.; Visser, G.H.A. Longitudinal study of fetal body movements: Nomograms, intrafetal consistency, and relationship with episodes of heart rate patterns A and B. Pediatr. Res. 2002, 52, 568–575. [Google Scholar] [CrossRef]
- Ryo, E.; Kamata, H.; Seto, M.; Morita, M.; Nagoya, Y.; Nishihara, K.; Ohki, N. Reference values for a fetal movement acceleration measurement recorder to count fetal movement. Pediatr. Res. 2018, 83, 961–968. [Google Scholar] [CrossRef]
- Nijhuis, J.G.; Prechtl, H.F.R.; Martin, C.B., Jr.; Bots, R. Are there behavioural states in the human fetus? Early Hum. Dev. 1982, 6, 177–195. [Google Scholar] [CrossRef]
- Zhao, X.; Zeng, X.Y.; Koehl, L.; Tartare, G.; de Jonckheere, J.; Song, K.H. An IoT-based wearable system using accelerometers and machine learning for fetal movement monitoring. In Proceedings of the IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), Taipei, Taiwan, 6–9 May 2019. [Google Scholar]
- Yusenas, N.; Intaravichai, J.; Tirasuwannarat, P.; Ouypornkochagorn, T. Preliminary study to detect fetal movement by using acceleration sensor and MEMS microphone. In Proceedings of the 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Chiang Rai, Thailand, 18–21 July 2018. [Google Scholar]
- Song, S.G.; Song, Y.B.; Zeng, C.C. Clinical application of remote electronic fetal heart monitoring system. Beijing Biomed. Eng. 2021, 40, 536–540. [Google Scholar]
FM Parameters | Proposed Method | Manual Labeling | |
---|---|---|---|
H Signal | S Signal | ||
Number (times/h) | 45.15 (23.08, 57.53) | 62.51 (28.70, 69.10) | 60.65 (28.18, 69.07) |
Interval (s) | 40.89 (37.75, 85.58) | 50.55 (47.15, 99.33) | 49.99 (48.92, 101.48) |
Duration (s) | 2.26 (1.89, 2.81) | 1.62 (1.37, 1.83) | 1.74 (1.49, 2.03) |
Percentage (%) | 3.19 (1.11, 4.17) | 2.54 (1.04, 3.16) | 2.78 (1.03, 3.26) |
Proposed Method | TDR (%) | PPV (%) | SEN (%) | ACC (%) | F1_Score (%) |
---|---|---|---|---|---|
H signal | 77.22 | 75.00 | 77.22 | 61.41 | 76.09 |
S signal | 95.75 | 95.26 | 95.75 | 91.40 | 95.50 |
Research Team | Measurement | Algorithm | Gold Standard | Number of Subjects/ Recording GWs | TDR (%) | PPV (%) | SEN (%) | ACC (%) | F1_Score (%) |
---|---|---|---|---|---|---|---|---|---|
Proposed method | Camera | Optical flow | Manual labeling | 5/28 to 36 | 96 | 95 | 96 | 91 | 96 |
Layeghy [34] | Accelerometry system | Time–frequency distribution and principal component analysis | Ultrasound and maternal perception | NA/NA | NA | 95 | 92 | 92 | 93 |
Khlif [35] | Accelerometers for motion | Root-mean-square and time–frequency matched filters | Ultrasound | 4/32, 32, 32, 35 | 80 | 77 | NA | NA | NA |
Liang [13] | Accelerometers | K-SVD dictionary learning and orthogonal matching pursuit algorithm | Maternal perception | 4/NA | 90 | 90 | NA | NA | NA |
Lai [37] | Acoustic sensors for vibration | Comb notch filtering and principal component analysis coordinate transform | Physician-identified | 44/24 to 34 | 68 | NA | NA | NA | NA |
Rooijakkers [12] | Abdominal ECG recordings | Band-pass filtering and the R-peak detection algorithm | Ultrasound | 20/22 to 40 | NA | NA | 64 | 68 | NA |
Schmidt [38] | Magneto-cardiographic | Moving correlation coefficient | Maternal perception | 30/NA | NA | NA | 81 | NA | NA |
Lu [39] | Fetal actography and tocography | Empirical mode decomposition, kohonen neural network and linear baseline estimation method | Physician-identified | 52/NA | NA | 71 | 82 | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Q.; Hao, D.; Yang, L.; Yang, Y.; Li, G. Non-Contact Monitoring of Fetal Movement Using Abdominal Video Recording. Sensors 2023, 23, 4753. https://doi.org/10.3390/s23104753
Han Q, Hao D, Yang L, Yang Y, Li G. Non-Contact Monitoring of Fetal Movement Using Abdominal Video Recording. Sensors. 2023; 23(10):4753. https://doi.org/10.3390/s23104753
Chicago/Turabian StyleHan, Qiao, Dongmei Hao, Lin Yang, Yimin Yang, and Guangfei Li. 2023. "Non-Contact Monitoring of Fetal Movement Using Abdominal Video Recording" Sensors 23, no. 10: 4753. https://doi.org/10.3390/s23104753
APA StyleHan, Q., Hao, D., Yang, L., Yang, Y., & Li, G. (2023). Non-Contact Monitoring of Fetal Movement Using Abdominal Video Recording. Sensors, 23(10), 4753. https://doi.org/10.3390/s23104753