Klobuchar, NeQuickG, BDGIM, GLONASS, IRI-2016, IRI-2012, IRI-Plas, NeQuick2, and GEMTEC Ionospheric Models: A Comparison in Total Electron Content and Positioning Domains
Abstract
:1. Introduction
2. Materials and Methods
2.1. GNSS RINEX Data
2.2. Ionospheric Models
2.3. Single-Frequency Positioning
2.4. Total Electron Content from Global Ionosphere Maps
2.5. Approach for Estimations
2.5.1. Positioning Domain
2.5.2. TEC Domain
- -
- Mean TEC error (TEC bias) <ΔI>,
- -
- Mean absolute TEC error (MAE) <|ΔI|>,
- -
- Mean percentage TEC error (MPE) <ΔI/I>,
- -
- Mean absolute percentage TEC error (MAPE) <|ΔI|/I>,
3. Ionospheric Model Quality
3.1. Ionospheric Models in Positioning Domain
3.2. Ionospheric Models in TEC Domain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Wasle, E. GNSS—Global Navigation Satellite Systems. GPS, GLONASS, Galileo, and More; Springer: Vienna, Austria, 2008; ISBN 978-3-211-73012-6. [Google Scholar]
- Afraimovich, E.L.; Astafyeva, E.I.; Demyanov, V.V.; Edemskiy, I.K.; Gavrilyuk, N.S.; Ishin, A.B.; Kosogorov, E.A.; Leonovich, L.A.; Lesyuta, O.S.; Palamartchouk, K.S.; et al. A Review of GPS/GLONASS Studies of the Ionospheric Response to Natural and Anthropogenic Processes and Phenomena. J. Space Weather Space Clim. 2013, 3, A27. [Google Scholar] [CrossRef]
- Gendt, G.; Dick, G.; Reigber, C.; Tomassini, M.; Liu, Y.; Ramatschi, M. Near Real Time GPS Water Vapor Monitoring for Numerical Weather Prediction in Germany. J. Meteorol. Soc. Jpn. 2004, 82, 361–370. [Google Scholar] [CrossRef]
- Larson, K.M.; Freymueller, J.T.; Philipsen, S. Global Plate Velocities from the Global Positioning System. J. Geophys. Res. 1997, 102, 9961–9981. [Google Scholar] [CrossRef]
- Vergados, P.; Komjathy, A.; Meng, X. GNSS Observation for Detection, Monitoring, and Forecasting Natural and Man-Made Hazardous Events. In Position, Navigation, and Timing Technologies in the 21st Century; Morton, Y.T.J., Diggelen, F., Spilker, J.J., Parkinson, B.W., Lo, S., Gao, G., Eds.; Wiley-IEEE Press: Hoboken, NJ, USA, 2020; pp. 939–969. ISBN 978-1-119-45841-8. [Google Scholar]
- European Union Agency for the Space Programme. EUSPA EO and GNSS Market Report.2022/Issue 1; Publications Office: Luxembourg, 2022. [Google Scholar]
- Huba, J.D.; Joyce, G.; Fedder, J.A. Sami2 is Another Model of the Ionosphere (SAMI2): A New Low-Latitude Ionosphere Model. J. Geophys. Res. 2000, 105, 23035–23053. [Google Scholar] [CrossRef]
- Namgaladze, A.A.; Korenkov, Y.N.; Klimenko, V.V.; Karpov, I.V.; Bessarab, F.S.; Surotkin, V.A.; Glushchenko, T.A.; Naumova, N.M. Global Model of the Thermosphere-Ionosphere-Protonosphere System. PAGEOPH 1988, 127, 219–254. [Google Scholar] [CrossRef]
- Bilitza, D.; Altadill, D.; Truhlik, V.; Shubin, V.; Galkin, I.; Reinisch, B.; Huang, X. International Reference Ionosphere 2016: From Ionospheric Climate to Real-time Weather Predictions. Space Weather 2017, 15, 418–429. [Google Scholar] [CrossRef]
- Nava, B.; Coïsson, P.; Radicella, S.M. A New Version of the NeQuick Ionosphere Electron Density Model. J. Atmos. Sol.-Terr. Phys. 2008, 70, 1856–1862. [Google Scholar] [CrossRef]
- Schunk, R.W.; Scherliess, L.; Sojka, J.J.; Thompson, D.C.; Anderson, D.N.; Codrescu, M.; Minter, C.; Fuller-Rowell, T.J.; Heelis, R.A.; Hairston, M.; et al. Global Assimilation of Ionospheric Measurements (GAIM): Global Assimilation of Ionospheric Measurements. Radio Sci. 2004, 39, 1–11. [Google Scholar] [CrossRef]
- Galkin, I.A.; Reinisch, B.W.; Huang, X.; Bilitza, D. Assimilation of GIRO Data into a Real-Time IRI. Radio Sci. 2012, 47, 2011RS004952. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Orus, R.; Garcia-Rigo, A.; Feltens, J.; Komjathy, A.; Schaer, S.C.; Krankowski, A. The IGS VTEC Maps: A Reliable Source of Ionospheric Information since 1998. J. Geod. 2009, 83, 263–275. [Google Scholar] [CrossRef]
- Dow, J.M.; Neilan, R.E.; Rizos, C. The International GNSS Service in a Changing Landscape of Global Navigation Satellite Systems. J. Geod. 2009, 83, 191–198. [Google Scholar] [CrossRef]
- NAVSTAR GPS Space Segment/Navigation User Segment Interfaces; IS-GPS-200-N; Interface Specification Document; GPS.gov: USA, 2022. Available online: https://www.gps.gov/technical/icwg/ (accessed on 1 January 2023).
- Klobuchar, J. Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users. IEEE Trans. Aerosp. Electron. Syst. 1987, AES-23, 325–331. [Google Scholar] [CrossRef]
- European GNSS (Galileo) Open Service—Ionospheric Correction Algorithm for Galileo Single Frequency Users; European Commission. 2016. Available online: https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo_Ionospheric_Model.pdf (accessed on 1 January 2023).
- Yuan, Y.; Wang, N.; Li, Z.; Huo, X. The BeiDou Global Broadcast Ionospheric Delay Correction Model (BDGIM) and Its Preliminary Performance Evaluation Results. NAVIGATION 2019, 66, 55–69. [Google Scholar] [CrossRef]
- Wang, N.; Li, Z.; Yuan, Y.; Huo, X. BeiDou Global Ionospheric Delay Correction Model (BDGIM): Performance Analysis during Different Levels of Solar Conditions. GPS Solut. 2021, 25, 97. [Google Scholar] [CrossRef]
- General Description of Code Division Multiple Access Signal System. Edition 1.0. Moscow; GLONASS. Interface Control Document; Russian Space Systems: Russia, 2016; Available online: https://russianspacesystems.ru/bussines/navigation/glonass/interfeysnyy-kontrolnyy-dokument/ (accessed on 1 January 2023).
- Bilitza, D.; Altadill, D.; Zhang, Y.; Mertens, C.; Truhlik, V.; Richards, P.; McKinnell, L.-A.; Reinisch, B. The International Reference Ionosphere 2012—A Model of International Collaboration. J. Space Weather Space Clim. 2014, 4, A07. [Google Scholar] [CrossRef]
- Gulyaeva, T.; Bilitza, D. Towards ISO Standard Earth Ionosphere and Plasmasphere Model. In New Developments in the Standard Model; Larsen, R.J., Ed.; Nova Science Publishers, Inc.: London, UK, 2012; pp. 1–39. ISBN 978-1-61209-989-7. [Google Scholar]
- Ivanov, V.B.; Gefan, G.D.; Gorbachev, O.A. Global Empirical Modelling of the Total Electron Content of the Ionosphere for Satellite Radio Navigation Systems. J. Atmos. Sol.-Terr. Phys. 2011, 73, 1703–1707. [Google Scholar] [CrossRef]
- Radicella, S.M. The NeQuick Model Genesis, Uses and Evolution. Ann. Geophys. 2009, 52, 417–422. [Google Scholar] [CrossRef]
- Prieto-Cerdeira, R.; Orús Pérez, R.; Breeuwer, E.; Lucas-Rodriguez, R.; Falcone, M. Performance of the Galileo Single-Frequency Ionospheric Correction During In-Orbit Validation. GPSworld 2014, 25, 53–58. [Google Scholar]
- Montenbruck, O.; González Rodríguez, B. NeQuick-G Performance Assessment for Space Applications. GPS Solut. 2020, 24, 13. [Google Scholar] [CrossRef]
- Froń, A.; Galkin, I.; Krankowski, A.; Bilitza, D.; Hernández-Pajares, M.; Reinisch, B.; Li, Z.; Kotulak, K.; Zakharenkova, I.; Cherniak, I.; et al. Towards Cooperative Global Mapping of the Ionosphere: Fusion Feasibility for IGS and IRI with Global Climate VTEC Maps. Remote Sens. 2020, 12, 3531. [Google Scholar] [CrossRef]
- Ivanov, V.B.; Gorbachev, O.A.; Kholmogorov, A.A.; Khokhryakov, D.E. Optimization and Testing of the GEMTEC Model of Total Electron Content in the Ionosphere. Cosmic Res. 2015, 53, 267–271. [Google Scholar] [CrossRef]
- Saastamoinen, J. Contributions to the Theory of Atmospheric Refraction. Bull. Geodesique 1972, 105, 279–298. [Google Scholar] [CrossRef]
- Zatolokin, D. Program to Solve the GNSS Navigation Problem “Navi”: Certificate of State Registration of the Software No. 2020612010, 2020. (In Russian)
- Roma-Dollase, D.; Hernández-Pajares, M.; Krankowski, A.; Kotulak, K.; Ghoddousi-Fard, R.; Yuan, Y.; Li, Z.; Zhang, H.; Shi, C.; Wang, C.; et al. Consistency of Seven Different GNSS Global Ionospheric Mapping Techniques during One Solar Cycle. J. Geod. 2018, 92, 691–706. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments against Avoiding RMSE in the Literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Gulyaeva, T.L.; Arikan, F.; Stanislawska, I. Inter-Hemispheric Imaging of the Ionosphere with the Upgraded IRI-Plas Model during the Space Weather Storms. Earth Planets Space 2011, 63, 929–939. [Google Scholar] [CrossRef]
- Rovira-Garcia, A.; Ibáñez-Segura, D.; Orús-Perez, R.; Juan, J.M.; Sanz, J.; González-Casado, G. Assessing the Quality of Ionospheric Models through GNSS Positioning Error: Methodology and Results. GPS Solut. 2020, 24, 4. [Google Scholar] [CrossRef]
- Wu, X.; Hu, X.; Wang, G.; Zhong, H.; Tang, C. Evaluation of COMPASS Ionospheric Model in GNSS Positioning. Adv. Space Res. 2013, 51, 959–968. [Google Scholar] [CrossRef]
- Ivanov, V.B.; Gorbachev, O.A.; Kholmogorov, A.A. Comparative Quality Analysis of Models of Total Electron Content in the Ionosphere. Geomagn. Aeron. 2016, 56, 318–322. [Google Scholar] [CrossRef]
- Zhukov, A.V.; Yasyukevich, Y.V.; Bykov, A.E. GIMLi: Global Ionospheric Total Electron Content Model Based on Machine Learning. GPS Solut. 2021, 25, 19. [Google Scholar] [CrossRef]
- Ezquer, R.G.; Scidá, L.A.; Migoya Orué, Y.; Nava, B.; Cabrera, M.A.; Brunini, C. NeQuick 2 and IRI Plas VTEC Predictions for Low Latitude and South American Sector. Adv. Space Res. 2018, 61, 1803–1818. [Google Scholar] [CrossRef]
- Okoh, D.; Onwuneme, S.; Seemala, G.; Jin, S.; Rabiu, B.; Nava, B.; Uwamahoro, J. Assessment of the NeQuick-2 and IRI-Plas 2017 Models Using Global and Long-Term GNSS Measurements. J. Atmos. Sol.-Terr. Phys. 2018, 170, 1–10. [Google Scholar] [CrossRef]
- Zakharenkova, I.E.; Cherniak, I.V.; Krankowski, A.; Shagimuratov, I.I. Vertical TEC Representation by IRI 2012 and IRI Plas Models for European Midlatitudes. Adv. Space Res. 2015, 55, 2070–2076. [Google Scholar] [CrossRef]
- Gordiyenko, G.I.; Maltseva, O.A.; Arikan, F.; Yakovets, A.F. The Performance of the IRI-Plas Model as Compared with Alouette II and GIM-TEC Data over the Midlatitude Station Alma-Ata. J. Atmos. Sol.-Terr. Phys. 2018, 179, 504–516. [Google Scholar] [CrossRef]
- Gordiyenko, G.I.; Maltseva, O.A.; Arikan, F.; Yakovets, A.F. An Evaluation of the IRI-Plas-TEC for Winter Anomaly along the Mid-Latitude Sector Based on GIM-TEC and FoF2 Values. Adv. Space Res. 2019, 64, 2046–2063. [Google Scholar] [CrossRef]
- Maltseva, O.A.; Mozhaeva, N.S.; Nikitenko, T.V. Validation of the Neustrelitz Global Model According to the Low Latitude Ionosphere. Adv. Space Res. 2014, 54, 463–472. [Google Scholar] [CrossRef]
- Hoque, M.M.; Jakowski, N.; Orús-Pérez, R. Fast Ionospheric Correction Using Galileo Az Coefficients and the NTCM Model. GPS Solut. 2019, 23, 41. [Google Scholar] [CrossRef]
- Jakowski, N.; Mayer, C.; Hoque, M.M.; Wilken, V. Total Electron Content Models and Their Use in Ionosphere Monitoring. Radio Sci. 2011, 46, 1–11. [Google Scholar] [CrossRef]
- Li, S.; Li, L.; Peng, J. Variability of Ionospheric TEC and the Performance of the IRI-2012 Model at the BJFS Station, China. Acta Geophys. 2016, 64, 1970–1987. [Google Scholar] [CrossRef]
- Panda, S.K.; Gedam, S.S.; Rajaram, G. Study of Ionospheric TEC from GPS Observations and Comparisons with IRI and SPIM Model Predictions in the Low Latitude Anomaly Indian Subcontinental Region. Adv. Space Res. 2015, 55, 1948–1964. [Google Scholar] [CrossRef]
- Yasyukevich, Y.V.; Afraimovich, E.L.; Palamartchouk, K.S.; Tatarinov, P.V. Cross Testing of Ionosphere Models IRI-2001 and IRI-2007, Data from Satellite Altimeters (Topex/Poseidon and Jason-1) and Global Ionosphere Maps. Adv. Space Res. 2010, 46, 990–1007. [Google Scholar] [CrossRef]
- Demyanov, V.; Yasyukevich, Y. Space Weather: Risk Factors for Global Navigation Satellite Systems. Sol.-Terr. Phys. 2021, 7, 28–47. [Google Scholar] [CrossRef]
- Ephishov, I.I.; Baran, L.W.; Shagimuratov, I.I.; Yakimova, G.A. Comparison of Total Electron Content Obtained from GPS with IRI. Phys. Chem. Earth Part C Sol. Terr. Planet. Sci. 2000, 25, 339–342. [Google Scholar] [CrossRef]
- Kenpankho, P.; Watthanasangmechai, K.; Supnithi, P.; Tsugawa, T.; Maruyama, T. Comparison of GPS TEC Measurements with IRI TEC Prediction at the Equatorial Latitude Station, Chumphon, Thailand. Earth Planets Space 2011, 63, 365–370. [Google Scholar] [CrossRef]
- Angrisano, A.; Gaglione, S.; Gioia, C.; Massaro, M.; Robustelli, U.; Santamaria, R. Ionospheric Models Comparison for Single-Frequency GNSS Positioning. In Proceedings of the European Navigation Conference—ENC 2011, London, UK, 29 November–1 December 2011. [Google Scholar]
- Wang, L.; Wei, E.; Xiong, S.; Zhang, T.; Shen, Z. Evaluation of NeQuick2 Model over Mid-Latitudes of Northern Hemisphere. Remote Sens. 2022, 14, 4124. [Google Scholar] [CrossRef]
- Orus Perez, R. Ionospheric Error Contribution to GNSS Single-Frequency Navigation at the 2014 Solar Maximum. J. Geod. 2017, 91, 397–407. [Google Scholar] [CrossRef]
- Chen, J.; Ren, X.; Zhang, X.; Zhang, J.; Huang, L. Assessment and Validation of Three Ionospheric Models (IRI-2016, NeQuick2, and IGS-GIM) From 2002 to 2018. Space Weather 2020, 18, e2019SW002422. [Google Scholar] [CrossRef]
- Aksenov, O.; Kozlov, S.; Lyakhov, A.; Trekin, V.; Perunov, Y.; Yakubovsky, S. Analyzing Existing Applied Models of the Ionosphere for Calculating Radio Wave Propagation and Possibility of Their Use for Radar Systems. I. Classification of Applied Models and the Main Requirements Imposed on Them for Radar Aids. Sol.-Terr. Phys. 2020, 6, 69–76. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, K.; Wu, S.; Shi, J.; Hu, A.; Wu, H.; Li, Y. An Investigation of Ionospheric TEC Prediction Maps Over China Using Bidirectional Long Short-Term Memory Method. Space Weather 2022, 20, e2022SW003103. [Google Scholar] [CrossRef]
- Yasyukevich, Y.V.; Kiselev, A.V.; Zhivetiev, I.V.; Edemskiy, I.K.; Syrovatskii, S.V.; Maletckii, B.M.; Vesnin, A.M. SIMuRG: System for Ionosphere Monitoring and Research from GNSS. GPS Solut. 2020, 24, 69. [Google Scholar] [CrossRef]
Model | Input Parameters | References |
---|---|---|
Klobuchar | Broadcast coefficients | [15,16] |
NeQuickG | Broadcast coefficients, CCIR | [17] |
BDGIM | Broadcast coefficients | [18,19] |
GLONASS 1 | F10.7, Ap | [20] |
IRI-2016 | IG12, URSI, topside—IRI-corr | [9] |
IRI-2012 | IG12, URSI, topside—IRI-corr | [21] |
IRI-Plas | IG12, URSI | [22] |
NeQuick2 | F10.7, CCIR | [10] |
GEMTEC | F10.7 | [23] |
Ionosphere Correction | σ3D, m | <ΔI>, TECU | <ΔI/I>, % | <|ΔI|>, TECU | <|ΔI|/I>, % |
---|---|---|---|---|---|
GIM IGSG | 1.838 | - | - | - | - |
BDGIM | 1.995 | −0.67 | 17.81 | 2.89 | 44.00 |
NeQuick2 | 2.032 | −1.22 | −9.20 | 3.00 | 30.00 |
GEMTEC | 2.042 | −0.28 | 4.79 | 2.36 | 26.90 |
IRI-2016 | 2.042 | −1.77 | −17.06 | 3.15 | 30.48 |
NeQuickG | 2.044 | −1.53 | −8.95 | 3.49 | 37.31 |
Klobuchar | 2.082 | 1.24 | 75.98 | 4.84 | 90.81 |
IRI-2012 | 2.083 | −1.47 | −15.16 | 3.15 | 30.35 |
IRI-Plas | 2.168 | 3.06 | 39.27 | 4.24 | 47.20 |
GLONASS | 2.185 | −1.91 | −9.20 | 4.81 | 52.32 |
No correction | 2.356 | - | - | - | - |
Ionosphere Correction | σ3D, m 1 | 25%, <TECU | 50%, <TECU | 75%, <TECU | 90%, <TECU | 95%, <TECU |
---|---|---|---|---|---|---|
BDGIM | 1.995 | 0.9 | 2.3 | 4.7 | 8.1 | 10.8 |
NeQuick2 | 2.032 | 1.0 | 2.6 | 5.3 | 10.0 | 14.5 |
GEMTEC | 2.042 | 0.6 | 1.8 | 4.1 | 8.1 | 11.9 |
IRI-2016 | 2.042 | 1.0 | 2.6 | 5.3 | 10.4 | 15.4 |
NeQuickG | 2.044 | 0.8 | 2.2 | 4.3 | 7.4 | 10.4 |
Klobuchar | 2.082 | 1.9 | 4.2 | 7.5 | 15.2 | 23.1 |
IRI-2012 | 2.083 | 1.0 | 2.5 | 5.1 | 9.8 | 14.4 |
IRI-Plas | 2.168 | 1.0 | 2.7 | 5.9 | 11.3 | 15.7 |
GLONASS | 2.185 | 1.9 | 4.4 | 8.7 | 15.0 | 20.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasyukevich, Y.V.; Zatolokin, D.; Padokhin, A.; Wang, N.; Nava, B.; Li, Z.; Yuan, Y.; Yasyukevich, A.; Chen, C.; Vesnin, A. Klobuchar, NeQuickG, BDGIM, GLONASS, IRI-2016, IRI-2012, IRI-Plas, NeQuick2, and GEMTEC Ionospheric Models: A Comparison in Total Electron Content and Positioning Domains. Sensors 2023, 23, 4773. https://doi.org/10.3390/s23104773
Yasyukevich YV, Zatolokin D, Padokhin A, Wang N, Nava B, Li Z, Yuan Y, Yasyukevich A, Chen C, Vesnin A. Klobuchar, NeQuickG, BDGIM, GLONASS, IRI-2016, IRI-2012, IRI-Plas, NeQuick2, and GEMTEC Ionospheric Models: A Comparison in Total Electron Content and Positioning Domains. Sensors. 2023; 23(10):4773. https://doi.org/10.3390/s23104773
Chicago/Turabian StyleYasyukevich, Yury V., Dmitry Zatolokin, Artem Padokhin, Ningbo Wang, Bruno Nava, Zishen Li, Yunbin Yuan, Anna Yasyukevich, Chuanfu Chen, and Artem Vesnin. 2023. "Klobuchar, NeQuickG, BDGIM, GLONASS, IRI-2016, IRI-2012, IRI-Plas, NeQuick2, and GEMTEC Ionospheric Models: A Comparison in Total Electron Content and Positioning Domains" Sensors 23, no. 10: 4773. https://doi.org/10.3390/s23104773
APA StyleYasyukevich, Y. V., Zatolokin, D., Padokhin, A., Wang, N., Nava, B., Li, Z., Yuan, Y., Yasyukevich, A., Chen, C., & Vesnin, A. (2023). Klobuchar, NeQuickG, BDGIM, GLONASS, IRI-2016, IRI-2012, IRI-Plas, NeQuick2, and GEMTEC Ionospheric Models: A Comparison in Total Electron Content and Positioning Domains. Sensors, 23(10), 4773. https://doi.org/10.3390/s23104773