Behavioural Models of Risk-Taking in Human–Robot Tactile Interactions
Abstract
:1. Introduction
2. Data Collection
2.1. Participants
2.2. Experiment Design
2.3. Human–Robot Tactile Interaction Conditions
2.4. Physiological Data
Risk-Taking Behaviour Data
3. Methodology
3.1. Data Analysis
3.2. Proposed Models
3.2.1. Physiological Features
3.2.2. Multicollinearity
3.2.3. Mixed Effects Model
3.3. Support Vector Regression Model
3.4. The Proposed Multi-Input Convolutional Multihead Attention (Mcma) Model
3.4.1. Model Structure
3.4.2. Ablation Study of the Proposed Mcma Model Components
4. Discussion
4.1. Experiment Results
4.2. Limitations and Implications
4.3. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tai, K.; Zheng, X.; Narayanan, J. Touching a teddy bear mitigates negative effects of social exclusion to increase prosocial behavior. Soc. Psychol. Personal. Sci. 2011, 2, 618–626. [Google Scholar] [CrossRef]
- Guo, Y.; Gu, X.; Yang, G.-Z. Human–robot interaction for rehabilitation robotics. In Digitalization in Healthcare: Implementing Innovation and Artificial Intelligence; Glauner, D., Plugmann, P., Lerzynski, G., Eds.; Springer: Cham, Switzerland, 2021; pp. 269–295. [Google Scholar]
- Ismail, L.I.; Verhoeven, T.; Dambre, J.; Wyffels, F. Leveraging robotics research for children with autism: A review. Int. J. Soc. Robot. 2019, 11, 389–410. [Google Scholar] [CrossRef]
- Kozima, H.; Michalowski, M.P.; Nakagawa, C. Keepon: A playful robot for research, therapy, and entertainment. Int. J. Soc. Robot. 2009, 1, 3–18. [Google Scholar] [CrossRef]
- Andreasson, R.; Alenljung, B.; Billing, E.; Lowe, R. Affective touch in human–robot interaction: Conveying emotion to the Nao robot. Int. J. Soc. Robot. 2018, 10, 473–491. [Google Scholar] [CrossRef]
- Maier, M.; Chowdhury, M.; Rimal, B.P.; Van Pham, D. The tactile internet: Vision, recent progress, and open challenges. IEEE Commun. Mag. 2016, 54, 138–145. [Google Scholar] [CrossRef]
- Cañamero, L.D. Playing the emotion game with feelix: What can a lego robot tell us about emotion? In Socially Intelligent Agents: Creating Relationships with Computers and Robots; Springer: Boston, MA, USA, 2002; Volume 3, pp. 69–76. [Google Scholar]
- Cooper, D. Psychology, risk and safety. Prof. Saf. 2003, 48, 39–46. [Google Scholar]
- Ali, A.J. Decision-making style, individualism, and attitudes toward risk of arab executives. Int. Stud. Manag. Organ. 1993, 23, 53–73. [Google Scholar] [CrossRef]
- Leather, N.C. Risk-taking behaviour in adolescence: A literature review. J. Child Health Care 2009, 13, 295–304. [Google Scholar] [CrossRef]
- Schoemaker, P.J.H. Determinants of risk-taking: Behavioral and economic views. J. Risk Uncertain. 1993, 6, 49–73. [Google Scholar] [CrossRef]
- Ren, Q.; Belpaeme, T. Tactile interaction with a robot leads to increased risk-taking. In Proceedings of the Social Robotics: 14th International Conference, ICSR 2022, Proceedings, Part I, Florence, Italy, 13–16 December 2022; pp. 120–129. [Google Scholar]
- Willemse, C.J.A.M.; Van Erp, J.B.F. Social touch in human–robot interaction: Robot-initiated touches can induce positive responses without extensive prior bonding. Int. J. Soc. Robot. 2019, 11, 285–304. [Google Scholar] [CrossRef]
- Zhou, Y.; Kornher, T.; Mohnke, J.; Fischer, M.H. Tactile interaction with a humanoid robot: Effects on physiology and subjective impressions. Int. J. Soc. Robot. 2021, 13, 1657–1677. [Google Scholar] [CrossRef]
- Li, J.J.; Ju, W.; Reeves, B. Touching a mechanical body: Tactile contact with body parts of a humanoid robot is physiologically arousing. J. Hum.-Robot Interact. 2017, 6, 118–130. [Google Scholar] [CrossRef]
- Yohanan, S.; MacLean, K.E. The role of affective touch in human–robot interaction: Human intent and expectations in touching the haptic creature. Int. J. Soc. Robot. 2012, 4, 163–180. [Google Scholar] [CrossRef]
- France, A. Towards a sociological understanding of youth and their risk-taking. J. Youth Stud. 2000, 3, 317–331. [Google Scholar] [CrossRef]
- Singh, M.; Xu, Q.; Wang, S.J.; Hong, T.; Ghassemi, M.M.; Lo, A.W. Real-time extended psychophysiological analysis of financial risk processing. PLoS ONE 2022, 17, e0269752. [Google Scholar] [CrossRef]
- Ahmad, F. Personality traits as predictor of cognitive biases: Moderating role of risk-attitude. Qual. Res. Financ. Mark. 2020, 12, 465–484. [Google Scholar] [CrossRef]
- Rashid, A.; Boussabiane, H. Conceptualizing the influence of personality and cognitive traits on project managers’ risk-taking behaviour. Int. J. Manag. Proj. Bus. 2021, 14, 472–496. [Google Scholar] [CrossRef]
- Giorgetta, C.; Grecucci, A.; Zuanon, S.; Perini, L.; Balestrieri, M.; Bonini, N.; Sanfey, A.G.; Brambilla, P. Reduced risk-taking behavior as a trait feature of anxiety. Emotion 2012, 12, 1373. [Google Scholar] [CrossRef]
- Herman, A.M.; Critchley, H.D.; Duka, T. Risk-taking and impulsivity: The role of mood states and interoception. Front. Psychol. 2018, 9, 1625. [Google Scholar] [CrossRef]
- Hanoch, Y.; Arvizzigno, F.; García, D.H.; Denham, S.; Belpaeme, T.; Gummerum, M. The robot made me do it: Human–robot interaction and risk-taking behavior. Cyberpsychol. Behav. Soc. Netw. 2021, 24, 337–342. [Google Scholar] [CrossRef]
- Greenwald, A.G. Within-subjects designs: To use or not to use? Psychol. Bull. 1976, 83, 314. [Google Scholar] [CrossRef]
- Chan, A.; Quek, F.; Panchal, H.; Howell, J.; Yamauchi, T.; Seo, J.H. The effect of co-verbal remote touch on electrodermal activity and emotional response in dyadic discourse. Sensors 2020, 21, 168. [Google Scholar] [CrossRef]
- Sagl, G.; Resch, B.; Petutschnig, A.; Kyriakou, K.; Liedlgruber, M.; Wilhelm, F.H. Wearables and the quantified self: Systematic benchmarking of physiological sensors. Sensors 2019, 19, 4448. [Google Scholar] [CrossRef] [PubMed]
- Nasseri, M.; Nurse, E.; Glasstetter, M.; Böttcher, S.; Gregg, N.M.; Nandakumar, A.L.; Joseph, B.; Attia, T.P.; Viana, P.F.; Bruno, E.; et al. Signal quality and patient experience with wearable devices for epilepsy management. Epilepsia 2020, 61, S25–S35. [Google Scholar] [CrossRef] [PubMed]
- Lejuez, C.W.; Read, J.P.; Kahler, C.W.; Richards, J.B.; Ramsey, S.E.; Stuart, G.L.; Strong, D.R.; Brown, R.A. Evaluation of a behavioral measure of risk taking: The balloon analogue risk task (bart). J. Exp. Psychol. Appl. 2002, 8, 75. [Google Scholar] [CrossRef]
- Szrek, H.; Chao, L.-W.; Ramlagan, S.; Peltzer, K. Predicting (un) healthy behavior: A comparison of risk-taking propensity measures. Judgm. Decis. Mak. 2012, 7, 716–727. [Google Scholar] [CrossRef]
- Bornovalova, M.A.; Daughters, S.B.; Hernandez, G.D.; Richards, J.B.; Lejuez, C.W. Differences in impulsivity and risk-taking propensity between primary users of crack cocaine and primary users of heroin in a residential substance-use program. Exp. Clin. Psychopharmacol. 2005, 13, 311. [Google Scholar] [CrossRef]
- Slinker, B.K.; Glantz, S.A. Multiple regression for physiological data analysis: The problem of multicollinearity. Am. J.-Physiol.-Regul. Integr. Comp. Physiol. 1985, 249, R1–R12. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, R.; Bajorath, J. Evolution of support vector machine and regression modeling in chemoinformatics and drug discovery. J. Comput.-Aided Mol. Des. 2022, 36, 355–362. [Google Scholar] [CrossRef]
- Hou, Y.; Kong, Q.; Wang, J.; Li, S. Polyphonic audio tagging with sequentially labelled data using crnn with learnable gated linear units. In Proceedings of the Detection and Classification of Acoustic Scenes and Events Workshop (DCASE), Surrey, UK, 19–20 November 2018; pp. 78–82. [Google Scholar]
- Hou, Y.; Deng, Y.; Zhu, B.; Ma, Z.; Botteldooren, D. Rule-embedded network for audio-visual voice activity detection in live musical video streams. In Proceedings of the ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 4165–4169. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 31, 6000–6010. [Google Scholar]
- Garbin, C.; Zhu, X.; Marques, O. Dropout vs. batch normalization: An empirical study of their impact to deep learning. Multimed. Tools Appl. 2020, 79, 12777–12815. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Metze, F. A comparison of five multiple instance learning pooling functions for sound event detection with weak labeling. In Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 31–35. [Google Scholar]
- Renn, O. Concepts of risk: An interdisciplinary review part 1: Disciplinary risk concepts. GAIA-Ecol. Perspect. Sci. Soc. 2008, 17, 50–66. [Google Scholar] [CrossRef]
- Furnham, A. The Psychology of Behaviour at Work: The Individual in the Organization; Psychology Press: Hove, UK, 2012. [Google Scholar]
- Luo, Y.; Tung, R.L. International expansion of emerging market enterprises: A springboard perspective. J. Int. Bus. Stud. 2007, 38, 481–498. [Google Scholar] [CrossRef]
- Turner, C.; McClure, R. Age and gender differences in risk-taking behaviour as an explanation for high incidence of motor vehicle crashes as a driver in young males. Inj. Control Saf. Promot. 2003, 10, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Khamis, A.; Meng, J.; Wang, J.; Azar, A.T.; Prestes, E.; Takács, Á.; Rudas, I.J.; Haidegger, T. Robotics and intelligent systems against a pandemic. Acta Polytech. Hung. 2021, 18, 13–35. [Google Scholar] [CrossRef]
- Nicholson, N.; Soane, E.; Fenton-O’Creevy, M.; Willman, P. Personality and domain-specific risk taking. J. Risk Res. 2005, 8, 157–176. [Google Scholar] [CrossRef]
- Fujino, J.; Fujimoto, S.; Kodaka, F.; Camerer, C.F.; Kawada, R.; Tsurumi, K.; Tei, S.; Isobe, M.; Miyata, J.; Sugihara, G.; et al. Neural mechanisms and personality correlates of the sunk cost effect. Sci. Rep. 2016, 6, 33171. [Google Scholar] [CrossRef]
- Fromme, K.; Katz, E.C.; Rivet, K. Outcome expectancies and risk-taking behavior. Cogn. Ther. Res. 1997, 21, 421–442. [Google Scholar] [CrossRef]
# | EDA | BVP | IBI | Temperature | Condition | MHA | MAE | RMSE | |
---|---|---|---|---|---|---|---|---|---|
1 | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ | 3.626 | 5.016 | 0.906 |
2 | ✓ | ✗ | ✓ | ✓ | ✓ | ✓ | 3.563 | 4.520 | 0.928 |
3 | ✓ | ✓ | ✗ | ✓ | ✓ | ✓ | 3.867 | 5.137 | 0.901 |
4 | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | 4.415 | 5.940 | 0.876 |
5 | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ | 3.938 | 5.427 | 0.887 |
6 | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ | 3.882 | 5.334 | 0.897 |
7 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | 3.174 | 4.377 | 0.930 |
Models | MAE | RMSE | |
---|---|---|---|
Mixed effects model | 10.97 | 14.73 | 0.30 |
SVM model | 10.75 | 14.28 | 0.35 |
Multi-input CNN–Transformer model | 3.17 | 4.38 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Q.; Hou, Y.; Botteldooren, D.; Belpaeme, T. Behavioural Models of Risk-Taking in Human–Robot Tactile Interactions. Sensors 2023, 23, 4786. https://doi.org/10.3390/s23104786
Ren Q, Hou Y, Botteldooren D, Belpaeme T. Behavioural Models of Risk-Taking in Human–Robot Tactile Interactions. Sensors. 2023; 23(10):4786. https://doi.org/10.3390/s23104786
Chicago/Turabian StyleRen, Qiaoqiao, Yuanbo Hou, Dick Botteldooren, and Tony Belpaeme. 2023. "Behavioural Models of Risk-Taking in Human–Robot Tactile Interactions" Sensors 23, no. 10: 4786. https://doi.org/10.3390/s23104786
APA StyleRen, Q., Hou, Y., Botteldooren, D., & Belpaeme, T. (2023). Behavioural Models of Risk-Taking in Human–Robot Tactile Interactions. Sensors, 23(10), 4786. https://doi.org/10.3390/s23104786