A Novel Unsupervised Video Anomaly Detection Framework Based on Optical Flow Reconstruction and Erased Frame Prediction
Abstract
:1. Introduction
- (1)
- (2)
- (1)
- The existing studies usually process the whole image of video frames. When the objects to be detected are relatively small, they have a minor impact on the detection of abnormal events. Ideally, the precise localization of anomalous activities requires a complete representation of the subject at the object level.
- (2)
- Although the abnormal events correspond to larger reconstruction errors, due to the problem of “over-generalizing” in deep neural network, abnormal events may also be reconstructed.
- (3)
- Prediction-based methods can predict the future video frames from the given first few frames in the video sequence; then, the prediction error of a single frame can be regarded as a measurement for anomalies. However, these methods cannot make full use of the temporal context [28,29,30] and high-level semantic information of video anomaly activities.
- (4)
- Motion is the key feature for understanding videos. Current studies generally deal with images without considering the motion information in the frames. This motion information can be provided by optical flow. Optical flow can use the change of pixels in the image sequence and the correlation with adjacent frames to find the corresponding relationship between the previous frame and the current frame.
- (1)
- We utilize a multi-level memory auto-encoder with skip connections to reconstruct video optical flow. By combining motion information (optical flow) and appearance information (object detection), the model can provide high-level semantics as auxiliary information to analyze the motion of video frames.
- (2)
- In order to make full use of the temporal context information of a video, we employ the idea of the “incomplete event” to predict the erased frames in the video, rather than the usual method based on future frame prediction.
- (3)
- We exploit the GAN training method and use the conditional auto-encoder as the generator. The model applies two discriminators to classify the predicted erased frames and optical flow to further improve the performance of the VAD model.
- (4)
2. Related Work
2.1. Traditional Machine Learning Methods
2.2. Method of Reconstruction Error
2.3. Method of Frame Prediction
3. The Proposed Methods
- (i)
- it uses a recurrent head network, which can efficiently detect small objects in images;
- (ii)
- the algorithm achieves a good balance between detection speed and accuracy.
3.1. Video Optical Flow Reconstruction with Memory Mechanism
3.2. Erased Frame Prediction Based on Hard Distillation
3.3. Criteria for Abnormal Event Detection
- (1)
- reconstruction error based on optical flow;
- (2)
- error based on frame prediction.
4. Experiments
4.1. Introduction to the Datasets
4.2. Implementation Details and Evaluation Criteria
4.3. Experimental Result
4.4. Ablation Experiment
5. Discussion
5.1. Top k in Memory Mechanism
5.2. Different Numbers of Temporal Context Information
5.3. Different Distillation Methods
5.4. Differing Numbers of Model Parameters
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jakob, P.; Madan, M.; Schmid-Schirling, T.; Valada, A. Multi-perspective anomaly detection. Sensors 2021, 21, 5311. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, Z.; Zhang, Y.; Wang, G. A Feature-Trajectory-Smoothed High-Speed Model for Video Anomaly Detection. Sensors 2023, 23, 1612. [Google Scholar] [CrossRef]
- De Paula, D.D.; Salvadeo, D.H.; de Araujo, D.M. CamNuvem: A robbery dataset for video anomaly detection. Sensors 2022, 22, 10016. [Google Scholar] [CrossRef]
- Sidibe, D.; Sankar, S.; Lemaitre, G.; Rastgoo, M.; Massich, J.; Cheung, C.Y.; Tan, G.S.; Milea, D.; Lamoureux, E.; Wong, T.Y.; et al. An anomaly detection approach for the identification of DME patients using spectral domain optical coherence tomography images. Comput. Methods Programs Biomed. 2017, 139, 109–117. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Chen, W.; Wang, Y.; Jiang, T. Anomaly detection for wind turbines based on the reconstruction of condition parameters using stacked denoising autoencoders. Renew. Energy 2020, 147, 1469–1480. [Google Scholar] [CrossRef]
- Abdallah, A.; Maarof, M.A.; Zainal, A. Fraud detection system: A survey. J. Netw. Comput. Appl. 2016, 68, 90–113. [Google Scholar] [CrossRef]
- Lv, H.; Chen, C.; Cui, Z.; Xu, C.; Li, Y.; Yang, J. Learning Normal Dynamics in Videos with Meta Prototype Network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 15425–15434. [Google Scholar]
- Georgescu, M.I.; Barbalau, A.; Ionescu, R.T.; Khan, F.S.; Popescu, M.; Shah, M. Anomaly detection in video via self-supervised and multi-task learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 12742–12752. [Google Scholar]
- Jin, Y.; Hong, J.; Han, D.; Ko, H. CPNet: Cross-Parallel Network for Efficient Anomaly Detection. In Proceedings of the 2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Washington, DC, USA, 16–19 November 2021; pp. 1–8. [Google Scholar]
- Wan, B.; Jiang, W.; Fang, Y.; Luo, Z.; Ding, G. Anomaly detection in video sequences: A benchmark and computational model. arXiv 2021, arXiv:2106.08570. [Google Scholar] [CrossRef]
- Zhang, M.; Li, T.; Shi, H.; Li, Y.; Hui, P. A decomposition approach for urban anomaly detection across spatiotemporal data. In Proceedings of the IJCAI International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H.; He, T. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9627–9636. [Google Scholar]
- Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. Centernet: Keypoint triplets for object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6569–6578. [Google Scholar]
- Yue, Z.; Gao, F.; Xiong, Q.; Wang, J.; Huang, T.; Yang, E.; Zhou, H. A novel semi-supervised convolutional neural network method for synthetic aperture radar image recognition. Cogn. Comput. 2021, 13, 795–806. [Google Scholar] [CrossRef]
- Ma, F.; Sun, X.; Zhang, F.; Zhou, Y.; Li, H.C. What catch your attention in SAR images: Saliency detection based on Soft-Superpixel lacunarity cue. IEEE Trans. Geosci. Remote Sens. 2022, 61, 1–17. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Zhao, Y.X.; Zhang, Y.M.; Song, M.; Liu, C.L. Adaptable Global Network for Whole-Brain Segmentation with Symmetry Consistency Loss. Cogn. Comput. 2022, 14, 2246–2259. [Google Scholar] [CrossRef]
- Wang, Y.N.; Tian, X.; Zhong, G. FFNet: Feature fusion network for few-shot semantic segmentation. Cogn. Comput. 2022, 14, 875–886. [Google Scholar] [CrossRef]
- Chalapathy, R.; Borzeshi, E.Z.; Piccardi, M. An investigation of recurrent neural architectures for drug name recognition. arXiv 2016, arXiv:1609.07585. [Google Scholar]
- Wulsin, D.; Blanco, J.; Mani, R.; Litt, B. Semi-supervised anomaly detection for EEG waveforms using deep belief nets. In Proceedings of the 2010 Ninth International Conference on Machine Learning and Applications, Washington, DC, USA, 12–14 December 2010; pp. 436–441. [Google Scholar]
- Song, H.; Jiang, Z.; Men, A.; Yang, B. A hybrid semi-supervised anomaly detection model for high-dimensional data. Comput. Intell. Neurosci. 2017, 2017, 8501683. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Choi, J.; Neumann, J.; Roy-Chowdhury, A.K.; Davis, L.S. Learning temporal regularity in video sequences. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 733–742. [Google Scholar]
- Luo, W.; Liu, W.; Gao, S. Remembering history with convolutional lstm for anomaly detection. In Proceedings of the 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, China, 10–14 July 2017; pp. 439–444. [Google Scholar]
- Nguyen, T.N.; Meunier, J. Anomaly detection in video sequence with appearance-motion correspondence. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1273–1283. [Google Scholar]
- Liu, W.; Luo, W.; Lian, D.; Gao, S. Future frame prediction for anomaly detection–a new baseline. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6536–6545. [Google Scholar]
- Mahadevan, V.; Li, W.; Bhalodia, V.; Vasconcelos, N. Anomaly detection in crowded scenes. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 1975–1981. [Google Scholar]
- Chang, X.; Ren, P.; Xu, P.; Li, Z.; Chen, X.; Hauptmann, A. A comprehensive survey of scene graphs: Generation and application. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 45, 1–26. [Google Scholar] [CrossRef]
- Zhang, L.; Chang, X.; Liu, J.; Luo, M.; Li, Z.; Yao, L.; Hauptmann, A. TN-ZSTAD: Transferable Network for Zero-Shot Temporal Activity Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 3848–3861. [Google Scholar] [CrossRef]
- Li, M.; Huang, P.Y.; Chang, X.; Hu, J.; Yang, Y.; Hauptmann, A. Video Pivoting Unsupervised Multi-Modal Machine Translation. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 3918–3932. [Google Scholar] [CrossRef]
- Saligrama, V.; Chen, Z. Video anomaly detection based on local statistical aggregates. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2112–2119. [Google Scholar]
- Zhang, Y.; Lu, H.; Zhang, L.; Ruan, X.; Sakai, S. Video anomaly detection based on locality sensitive hashing filters. Pattern Recognit. 2016, 59, 302–311. [Google Scholar] [CrossRef]
- Liu, Z.; Nie, Y.; Long, C.; Zhang, Q.; Li, G. A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Nashville, TN, USA, 20–25 June 2021; pp. 13588–13597. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; Girshick, R. Masked autoencoders are scalable vision learners. arXiv 2021, arXiv:2111.06377. [Google Scholar]
- Lu, C.; Shi, J.; Jia, J. Abnormal event detection at 150 fps in matlab. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 1–8 December 2013; pp. 2720–2727. [Google Scholar]
- Wu, S.; Moore, B.E.; Shah, M. Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 2054–2060. [Google Scholar]
- Tung, F.; Zelek, J.S.; Clausi, D.A. Goal-based trajectory analysis for unusual behaviour detection in intelligent surveillance. Image Vis. Comput. 2011, 29, 230–240. [Google Scholar] [CrossRef]
- Erfani, S.M.; Rajasegarar, S.; Karunasekera, S.; Leckie, C. High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recognit. 2016, 58, 121–134. [Google Scholar] [CrossRef]
- Piciarelli, C.; Foresti, G.L. On-line trajectory clustering for anomalous events detection. Pattern Recognit. Lett. 2006, 27, 1835–1842. [Google Scholar] [CrossRef]
- Piciarelli, C.; Micheloni, C.; Foresti, G.L. Trajectory-based anomalous event detection. IEEE Trans. Circuits Syst. Video Technol. 2008, 18, 1544–1554. [Google Scholar] [CrossRef]
- Morris, B.T.; Trivedi, M.M. Trajectory Learning for Activity Understanding: Unsupervised, Multilevel, and Long-Term Adaptive Approach. IEEE Trans. Softw. Eng. 2011, 33, 2287–2301. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Ricci, E.; Yan, Y.; Song, J.; Sebe, N. Learning deep representations of appearance and motion for anomalous event detection. arXiv 2015, arXiv:1510.01553. [Google Scholar]
- Hinami, R.; Mei, T.; Satoh, S. Joint detection and recounting of abnormal events by learning deep generic knowledge. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3619–3627. [Google Scholar]
- Luo, W.; Liu, W.; Gao, S. A revisit of sparse coding based anomaly detection in stacked rnn framework. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 341–349. [Google Scholar]
- Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative adversarial networks: An overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [Google Scholar] [CrossRef]
- Yan, C.; Chang, X.; Li, Z.; Guan, W.; Ge, Z.; Zhu, L.; Zheng, Q. Zeronas: Differentiable generative adversarial networks search for zero-shot learning. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 9733–9740. [Google Scholar] [CrossRef] [PubMed]
- Salehi, M.; Sadjadi, N.; Baselizadeh, S.; Rohban, M.H.; Rabiee, H.R. Multiresolution knowledge distillation for anomaly detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14902–14912. [Google Scholar]
- Li, C.L.; Sohn, K.; Yoon, J.; Pfister, T. CutPaste: Self-Supervised Learning for Anomaly Detection and Localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 9664–9674. [Google Scholar]
- Cui, Z.; Qin, Y.; Zhong, Y.; Cao, Z.; Yang, H. Target Detection in High-Resolution SAR Image via Iterating Outliers and Recursing Saliency Depth. Remote Sens. 2021, 13, 4315. [Google Scholar] [CrossRef]
- Pang, G.; Yan, C.; Shen, C.; Hengel, A.v.d.; Bai, X. Self-trained deep ordinal regression for end-to-end video anomaly detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 12173–12182. [Google Scholar]
- Saypadith, S.; Onoye, T. An Approach to Detect Anomaly in Video Using Deep Generative Network. IEEE Access 2021, 9, 150903–150910. [Google Scholar] [CrossRef]
- Chong, Y.S.; Tay, Y.H. Abnormal event detection in videos using spatiotemporal autoencoder. In Proceedings of the International Symposium on Neural Networks, Sapporo, Japan, 21–26 June 2017; pp. 189–196. [Google Scholar]
- Feng, X.; Song, D.; Chen, Y.; Chen, Z.; Ni, J.; Chen, H. Convolutional Transformer based Dual Discriminator Generative Adversarial Networks for Video Anomaly Detection. In Proceedings of the 29th ACM International Conference on Multimedia, Online, 20–24 October 2021; pp. 5546–5554. [Google Scholar]
- Veluchamy, S.; Karlmarx, L.; Mahesh, K.M. Detection and Localization of Abnormalities in Surveillance Video Using Timerider-Based Neural Network. Comput. J. 2021, 64, 1886–1906. [Google Scholar] [CrossRef]
- Lee, S.; Kim, H.G.; Ro, Y.M. BMAN: Bidirectional Multi-Scale Aggregation Networks for Abnormal Event Detection. IEEE Trans. Image Process. 2019, 29, 2395–2408. [Google Scholar]
- Leyva, R.; Sanchez, V.; Li, C.T. Video anomaly detection with compact feature sets for online performance. IEEE Trans. Image Process. 2017, 26, 3463–3478. [Google Scholar] [CrossRef] [PubMed]
- Athanesious, J.; Srinivasan, V.; Vijayakumar, V.; Christobel, S.; Sethuraman, S.C. Detecting abnormal events in traffic video surveillance using superorientation optical flow feature. IET Image Process. 2020, 14, 1881–1891. [Google Scholar] [CrossRef]
- Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6154–6162. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Mathieu, M.; Couprie, C.; LeCun, Y. Deep multi-scale video prediction beyond mean square error. arXiv 2015, arXiv:1511.05440. [Google Scholar]
- Park, H.; Noh, J.; Ham, B. Learning memory-guided normality for anomaly detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 14372–14381. [Google Scholar]
- Fan, Y.; Wen, G.; Li, D.; Qiu, S.; Levine, M.D.; Xiao, F. Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder. Comput. Vis. Image Underst. 2020, 195, 102920. [Google Scholar] [CrossRef]
- Gong, D.; Liu, L.; Le, V.; Saha, B.; Mansour, M.R.; Venkatesh, S.; Hengel, A.v.d. Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1705–1714. [Google Scholar]
- Liu, Y.; Li, C.L.; Póczos, B. Classifier Two Sample Test for Video Anomaly Detections. In Proceedings of the British Machine Vision Conference, Newcastle, UK, 3–6 September 2018; p. 71. [Google Scholar]
- Yu, G.; Wang, S.; Cai, Z.; Zhu, E.; Xu, C.; Yin, J.; Kloft, M. Cloze test helps: Effective video anomaly detection via learning to complete video events. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 583–591. [Google Scholar]
- Lu, Y.; Kumar, K.M.; Shahabeddin Nabavi, S.; Wang, Y. Future frame prediction using convolutional vrnn for anomaly detection. In Proceedings of the 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Taipei, Taiwan, 18–21 September 2019; pp. 1–8. [Google Scholar]
- Zhou, J.T.; Zhang, L.; Fang, Z.; Du, J.; Peng, X.; Xiao, Y. Attention-driven loss for anomaly detection in video surveillance. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 4639–4647. [Google Scholar] [CrossRef]
- Dong, F.; Zhang, Y.; Nie, X. Dual discriminator generative adversarial network for video anomaly detection. IEEE Access 2020, 8, 88170–88176. [Google Scholar] [CrossRef]
- Sun, C.; Jia, Y.; Hu, Y.; Wu, Y. Scene-aware context reasoning for unsupervised abnormal event detection in videos. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 184–192. [Google Scholar]
- Doshi, K.; Yilmaz, Y. Any-shot sequential anomaly detection in surveillance videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 934–935. [Google Scholar]
- Morais, R.; Le, V.; Tran, T.; Saha, B.; Mansour, M.; Venkatesh, S. Learning regularity in skeleton trajectories for anomaly detection in videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 11996–12004. [Google Scholar]
- Zhao, Y.; Deng, B.; Shen, C.; Liu, Y.; Lu, H.; Hua, X.S. Spatio-temporal autoencoder for video anomaly detection. In Proceedings of the 25th ACM international conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 1933–1941. [Google Scholar]
- Ye, M.; Peng, X.; Gan, W.; Wu, W.; Qiao, Y. Anopcn: Video anomaly detection via deep predictive coding network. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 1805–1813. [Google Scholar]
- Tang, Y.; Zhao, L.; Zhang, S.; Gong, C.; Li, G.; Yang, J. Integrating prediction and reconstruction for anomaly detection. Pattern Recognit. Lett. 2020, 129, 123–130. [Google Scholar] [CrossRef]
Category | Method | Ped2 | CUHK Avenue | ShanghaiTech |
---|---|---|---|---|
R-VAD [45] | 92.2 | 81.7 | 68.0 | |
Conv-VAD [39] | 90.0 | 70.2 | 60.9 | |
MEM-VAD [62] | 90.2 | 82.8 | 69.8 | |
Restructure | LAD [10] | 95.1 | 89.3 | / |
GMFC-VAE [63] | 92.2 | 83.4 | / | |
MemAE [64] | 94.1 | 83.3 | 69.8 | |
C-VAD [65] | 87.5 | 84.4 | ||
VEC [66] | 97.3 | 89.6 | 74.8 | |
FPVAD [26] | 95.4 | 85.1 | 72.8 | |
CPNet [9] | 96.1 | 85.1 | / | |
Prediction | ConvVRNN [67] | 96.1 | 85.8 | / |
Attention-VAD [68] | 96.0 | 86.0 | / | |
D-VAD [69] | 95.6 | 84.9 | 73.7 | |
S-VAD [70] | / | 89.6 | 74.7 | |
ASSVAD [71] | 96.7 | 86.4 | 71.6 | |
MPED-RNN [72] | / | / | 73.4 | |
Hybrid Frame | ST-CAE [73] | 91.2 | 80.9 | / |
AnoPCN [74] | 96.8 | 86.2 | 73.6 | |
PR-AD [75] | 96.3 | 85.1 | 73.0 | |
Ours | 97.7 | 89.7 | 75.8 |
Dataset | Baseline | Optical Flow | Erased Frame Prediction | Multi-Discriminator | AUROC (%) |
---|---|---|---|---|---|
✓ | 94.1 | ||||
✓ | ✓ | 95.2 | |||
Ped2 | ✓ | ✓ | ✓ | 96.1 | |
✓ | ✓ | ✓ | ✓ | 97.7 | |
✓ | 86.3 | ||||
✓ | ✓ | 87.2 | |||
CUHK Avenue | ✓ | ✓ | ✓ | 87.6 | |
✓ | ✓ | ✓ | ✓ | 89.7 |
Dataset | Top k | AUROC (%) |
---|---|---|
K = 5 | 95.4 | |
K = 10 | 95.9 | |
Ped2 | K = 20 | 97.7 |
K = 30 | 96.9 | |
Weight mean | 95.6 | |
K = 5 | 88.1 | |
K = 10 | 88.6 | |
CUHK Avenue | K = 20 | 89.7 |
K = 30 | 89.1 | |
Weight mean | 89.3 |
Dataset | t = ? | AUROC (%) |
---|---|---|
t = 3 | 94.2 | |
Ped2 | t = 5 | 97.7 |
t = 7 | 96.6 | |
t = 3 | 81.0 | |
CUHK Avenue | t = 5 | 89.7 |
t = 7 | 88.9 |
Dataset | Soft Distillation | Hard Distillation | AROUC (%) |
---|---|---|---|
Ped2 | ✓ | 97.5 | |
✓ | 97.7 | ||
CUHK Avenue | ✓ | 88.1 | |
✓ | 89.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Zhao, B.; Gao, F.; Chen, P.; Wang, J.; Hussain, A. A Novel Unsupervised Video Anomaly Detection Framework Based on Optical Flow Reconstruction and Erased Frame Prediction. Sensors 2023, 23, 4828. https://doi.org/10.3390/s23104828
Huang H, Zhao B, Gao F, Chen P, Wang J, Hussain A. A Novel Unsupervised Video Anomaly Detection Framework Based on Optical Flow Reconstruction and Erased Frame Prediction. Sensors. 2023; 23(10):4828. https://doi.org/10.3390/s23104828
Chicago/Turabian StyleHuang, Heqing, Bing Zhao, Fei Gao, Penghui Chen, Jun Wang, and Amir Hussain. 2023. "A Novel Unsupervised Video Anomaly Detection Framework Based on Optical Flow Reconstruction and Erased Frame Prediction" Sensors 23, no. 10: 4828. https://doi.org/10.3390/s23104828
APA StyleHuang, H., Zhao, B., Gao, F., Chen, P., Wang, J., & Hussain, A. (2023). A Novel Unsupervised Video Anomaly Detection Framework Based on Optical Flow Reconstruction and Erased Frame Prediction. Sensors, 23(10), 4828. https://doi.org/10.3390/s23104828