The Use of Wearable Inertial Sensors and Workplace-Based Exercises to Reduce Lateral Epicondylitis in the Workstation of a Textile Logistics Center
Abstract
:1. Introduction
- An individual evaluation, using wearable sensors, of the working movement of the 93 workers who occupied the workplace.
- An individual interview to inform each worker on the risk observed according to their evaluation and to discuss their personal physical limitations through a questionnaire.
- Personalized training sessions with a personal trainer to adopt a less harmful work movement adapted to the worker.
- A second individual evaluation of the corrected working movement using wearable sensors to validate the approach with a sample of 27 workers.
- A workplace-based exercise intervention composed of daily warm-up and stretching exercises.
2. Material and Methods
2.1. Participants, Workplace, and Task Description
- A total of 61 males and 32 females;
- Age: 40 ± 18 years;
- A total of 85 right-handers and 6 left-handers.
2.2. Intervention
- An individual evaluation, using wearable sensors, of the working movement of the 93 workers who occupied the workplace.
- An individual interview to inform each worker on the risk observed according to their evaluation, and to discuss their personal physical limitations through a questionnaire.
- Personalized training sessions with a personal trainer to adopt a less harmful work movement adapted to the worker.
- A second individual evaluation of the corrected working movement using wearable sensors to validate the approach with a sample of 27 workers.
2.2.1. Experimental Data Collection
2.2.2. Work-Related Evaluation of Risk Factors
- (1)
- 15 points for the hand and forearm that throw the garment (arm 1).
- (a)
- % of time spent with hand supination or pronation of more than 45°: 5 points.
- (b)
- Wrist extension amplitude: 5 points.
- (c)
- Wrist extension angular velocity: 5 points.
- (2)
- 10 points for the elbow of the arm 1.
- (a)
- Elbow 1 extension amplitude: 5 points.
- (b)
- Elbow 1 extension angular velocity: 5 points.
- (3)
- 10 points for the rest of the joints. % of time spent out of the recommended comfort angles [36].
- (a)
- Shoulder 1: 3 points (1 point for each angle).
- (b)
- Shoulder 2: 3 points (1 point for each angle).
- (c)
- Elbow 2: 1 point.
- (d)
- Wrist 2: 3 points (1 point for each angle).
- (4)
- 5 points for the task frequency.
2.2.3. Movement Correction
2.2.4. Data Analysis
2.2.5. Workplace-Based Exercises
- -
- Four neck internal and external rotations.
- -
- Four neck tilts (for each direction).
- -
- Ten chest expansions.
- -
- Ten wrist circles with clasped hands (for each direction).
- -
- Four standing toe touching with feet shoulder width apart (left foot, center, and right foot).
- -
- Five torso rotations (for each direction).
- -
- Five standing single leg hip rotations (each leg).
- -
- Five bodyweight deep squats hold.
- -
- Five bodyweight standing calf raises.
- -
- Five bodyweight standing toe raises.
- -
- three standing toe touch stretches with feet shoulder width apart (holding 3 s for each foot).
- -
- One standing quadriceps stretch (holding 8 secs for each leg).
- -
- One standing knee to chest stretch (holding 8 secs for each leg).
- -
- Two standing arms backward chest stretch (holding 2 s).
- -
- Two standing side bend stretches (for each direction).
- -
- Three standing wrist prayer stretches.
- -
- Three open-hand finger stretches (holding 2 s).
- -
- Three wrist extensor stretches (holding 2 s for each hand, Figure 5).
- -
- Two wrist flexor stretches (holding 2 s for each hand).
- -
- Three neck flexion stretches (holding 2 s).
3. Results
3.1. Pre-Intervention
3.2. Post-Intervention
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walz, D.M.; Newman, J.S.; Konin, G.P.; Ross, G. Epicondylitis: Pathogenesis, Imaging, and Treatment. Radiographics 2010, 30, 167–184. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, I.; Marcos-García, A.; Muratore-Moreno, G.; Médina, J. Four surgical tips in the treatment of epicondylitis. Rev. Española Cirugía Ortopédica Y Traumatol. (Engl. Ed.) 2016, 60, 38–43. [Google Scholar] [CrossRef]
- Bin Park, H.; Gwark, J.-Y.; Im, J.-H.; Na, J.-B. Factors Associated With Lateral Epicondylitis of the Elbow. Orthop. J. Sports Med. 2021, 9, 6–8. [Google Scholar] [CrossRef]
- Amjad, F.; Matloob, M.; Javed, N.U.N.; Hashim, A.; Chaudhry, A.; Zafar, B.; Khan, K. Work-Related Risk Factors for Lateral Epicondylitis in Chef in Lahore. Pak. J. Med. Health Sci. 2023, 17, 241–244. [Google Scholar] [CrossRef]
- Msc, E.H.; Bodin, J.; Roquelaure, Y.; Ha, C.; Leclerc, A.; Goldberg, M.; Zins, M.; Descatha, A. Work-related risk factors for lateral epicondylitis and other cause of elbow pain in the working population. Am. J. Ind. Med. 2012, 56, 400–409. [Google Scholar] [CrossRef]
- Sluiter, J.K.; Rest, K.M.; Frings-Dresen, M.H.H. Criteria document for evaluating the work-relatedness of upper-extremity musculoskeletal disorders. Scand. J. Work. Environ. Health 2001, 27, 1–102. [Google Scholar] [CrossRef]
- Stegink-Jansen, C.W.; Bynum, J.G.; Lambropoulos, A.L.; Patterson, R.M.; Cowan, A.C. Lateral epicondylosis: A literature review to link pathology and tendon function to tissue-level treatment and ergonomic interventions. J. Hand Ther. 2021, 34, 263–297. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Yeo, J.; Lee, Y.-S.; Kim, E.J.; Nam, D.; Park, Y.-C.; Ha, I.-H.; Lee, Y.J. Healthcare Utilization for Lateral Epicondylitis: A 9-Year Analysis of the 2010–2018 Health Insurance Review and Assessment Service National Patient Sample Data. Healthcare 2022, 10, 636. [Google Scholar] [CrossRef]
- Sanders, T.L.; Kremers, H.M.; Bryan, A.J.; Ransom, J.E.; Morrey, B.F. Health Care Utilization and Direct Medical Costs of Tennis Elbow: A Population-Based Study. Sports Health A Multidiscip. Approach 2016, 8, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Cormack, M. Ergonomic and behavioral interventions as the primary treatment for work-related lateral epicondylitis. Work 2010, 37, 81–86. [Google Scholar] [CrossRef]
- Hoe, V.C.; Urquhart, D.M.; Kelsall, H.L.; Zamri, E.N.; Sim, M.R. Ergonomic interventions for preventing work-related musculoskeletal disorders of the upper limb and neck among office workers. Cochrane Database Syst. Rev. 2018, 2018, CD008570. [Google Scholar] [CrossRef]
- van de Wijdeven, B.; Visser, B.; Daams, J.; Kuijer, P.P. A first step towards a framework for interventions for individual working practice to prevent work-related musculoskeletal disorders: A scoping review. BMC Musculoskelet. Disord. 2023, 24, 87. [Google Scholar] [CrossRef]
- Zare, M.; Malinge-Oudenot, A.; Höglund, R.; Biau, S.; Roquelaure, Y. Evaluation of ergonomic physical risk factors in a truck manufacturing plant: Case study in SCANIA Production Angers. Ind. Health 2016, 54, 163–176. [Google Scholar] [CrossRef]
- Maxner, A.; Gray, H.; Vijendren, A. A systematic review of biomechanical risk factors for the development of work-related musculoskeletal disorders in surgeons of the head and neck. Work 2021, 69, 247–263. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, M.B.; Korshøj, M.; Lagersted-Olsen, J.; Villumsen, M.; Mortensen, O.S.; Skotte, J.; Søgaard, K.; Madeleine, P.; Thomsen, B.L.; Holtermann, A. Physical activities at work and risk of musculoskeletal pain and its consequences: Protocol for a study with objective field measures among blue-collar workers. BMC Musculoskelet. Disord. 2013, 14, 213–219. [Google Scholar] [CrossRef]
- Hansson, G.; Balogh, I.; Ohlsson, K.; Granqvist, L.; Nordander, C.; Arvidsson, I.; Åkesson, I.; Unge, J.; Rittner, R.; Strömberg, U.; et al. Physical workload in various types of work: Part II. Neck, shoulder and upper arm. Int. J. Ind. Ergon. 2010, 40, 267–281. [Google Scholar] [CrossRef]
- Bodin, J.; Garlantézec, R.; Costet, N.; Descatha, A.; Viel, J.-F.; Roquelaure, Y. Shoulder pain among male industrial workers: Validation of a conceptual model in two independent French working populations. Appl. Ergon. 2020, 85, 103075. [Google Scholar] [CrossRef]
- Roquelaure, Y.; Garlantézec, R.; Evanoff, B.A.; Descatha, A.; Fassier, J.-B.; Bodin, J. Personal, biomechanical, psychosocial, and organizational risk factors for carpal tunnel syndrome: A structural equation modeling approach. Pain 2019, 161, 749–757. [Google Scholar] [CrossRef]
- Stock, S.; Nicolakakis, N.; Messing, K.; Turcot, A.; Raiq, H. Quelle est la relation entre les troubles musculo-squelettiques (TMS) liés au travail et les facteurs psychosociaux? Perspect. Interdiscip. Sur Trav. St. 2013. [Google Scholar] [CrossRef]
- Zare, M.; Bodin, J.; Sagot, J.-C.; Roquelaure, Y. Quantification of Exposure to Risk Postures in Truck Assembly Operators: Neck, Back, Arms and Wrists. Int. J. Environ. Res. Public Health 2020, 17, 6062. [Google Scholar] [CrossRef] [PubMed]
- Donisi, L.; Cesarelli, G.; Pisani, N.; Ponsiglione, A.M.; Ricciardi, C.; Capodaglio, E. Wearable Sensors and Artificial Intelligence for Physical Ergonomics: A Systematic Review of Literature. Diagnostics 2022, 12, 3048. [Google Scholar] [CrossRef] [PubMed]
- Rybnikár, F.; Kačerová, I.; Hořejší, P.; Šimon, M. Ergonomics Evaluation Using Motion Capture Technology—Literature Review. Appl. Sci. 2022, 13, 162. [Google Scholar] [CrossRef]
- Michaud, F.; Soto, M.P.; Lugrís, U.; Cuadrado, J. Lower Back Injury Prevention and Sensitization of Hip Hinge with Neutral Spine Using Wearable Sensors during Lifting Exercises. Sensors 2021, 21, 5487. [Google Scholar] [CrossRef] [PubMed]
- Mouzo, F.; Michaud, F.; Lugris, U.; Masood, J.; Cuadrado, J. Evaluation of Two Upper-Limb Exoskeletons for Ceiling Welding in the Naval Industry. In Biosystems and Biorobotics; Springer: Berlin/Heidelberg, Germany, 2021; Volume 27, pp. 153–158. [Google Scholar] [CrossRef]
- Michaud, F.; Lugrís, U.; Cuadrado, J. Determination of the 3D Human Spine Posture from Wearable Inertial Sensors and a Multibody Model of the Spine. Sensors 2022, 22, 4796. [Google Scholar] [CrossRef]
- Huang, C.; Kim, W.; Zhang, Y.; Xiong, S. Development and Validation of a Wearable Inertial Sensors-Based Automated System for Assessing Work-Related Musculoskeletal Disorders in the Workspace. Int. J. Environ. Res. Public Health 2020, 17, 6050. [Google Scholar] [CrossRef]
- Ye, S.; Feng, S.; Huang, L.; Bian, S. Recent Progress in Wearable Biosensors: From Healthcare Monitoring to Sports Analytics. Biosensors 2020, 10, 205. [Google Scholar] [CrossRef]
- Santos, S.; Folgado, D.; Rodrigues, J.; Mollaei, N.; Fujão, C.; Gamboa, H. Explaining the Ergonomic Assessment of Human Movement in Industrial Contexts. In Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2020)-BIOSIGNALS, Valletta, Malta, 24–26 February 2020; pp. 79–88. [Google Scholar] [CrossRef]
- Menychtas, D.; Glushkova, A.; Manitsaris, S. Analyzing the kinematic and kinetic contributions of the human upper body’s joints for ergonomics assessment. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 6093–6105. [Google Scholar] [CrossRef]
- Zheng, J.; Ting, R.; Chen, X.; Johnston, V. Workplace-Based Exercise Intervention Improves Work Ability in Office Workers: A Cluster Randomised Controlled Trial. Int. J. Environ. Res. Public Health 2019, 16, 2633. [Google Scholar]
- Ilmarinen, J. Work ability—A comprehensive concept for occupational health research and prevention. Scand. J. Work. Environ. Health 2009, 35, 1–5. [Google Scholar] [CrossRef]
- Pierleoni, P.; Belli, A.; Palma, L.; Mercuri, M.; Verdini, F.; Fioretti, S.; Madgwick, S.; Pinti, F. Validation of a Gait Analysis Algorithm for Wearable Sensors. In Proceedings of the 2019 International Conference on Sensing and Instrumentation in IoT Era (ISSI), Lisbon, Portugal, 29–30 August 2019; pp. 1–6. [Google Scholar]
- STT-Systems. iSen Inertial Motion Capture. Available online: https://motio.stt-systems.com/isen-inertial-motion-capture-and-analysis/ (accessed on 18 May 2023).
- Roetenberg, D.; Luinge, H.; Veltink, P. Inertial and magnetic sensing of human movement near ferromagnetic materials. In Proceedings of the The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, Tokyo, Japan, 10 October 2003; pp. 268–269. [Google Scholar]
- Bazancir, Z.; Fırat, T. A potential factor in the pathophysiology of lateral epicondylitis: The long sarcomere length of the extensor carpi radialis brevis muscle and implications for physiotherapy. Med. Hypotheses 2019, 130, 109278. [Google Scholar] [CrossRef]
- Mondelo, P.R.; Gregori, E.; Blasco, J.; Barrau, P. Ergonomía 3: Diseño de Puestos de Trabajo; Edicions UPC: Barcelona, Spain, 1999; Volume 3, Available online: http://direct.awardspace.info/directoriow/PedroMondeloErgonomia3DisenoDePuestosDeTrabajo.pdf (accessed on 27 March 2023).
- Kilbom, Å. Repetitive work of the upper extremity: Part II—The scientific basis (knowledge base) for the guide. Int. J. Ind. Ergon. 1994, 14, 59–86. [Google Scholar] [CrossRef]
- Navidi, W. Statistics for Engineers and Scientists, 3rd ed.; McGraw-Hill Education: New York, NY, USA, 2010; ISBN 9780073401331. [Google Scholar]
- Viswas, R.; Ramachandran, R.; Anantkumar, P.K. Comparison of Effectiveness of Supervised Exercise Program and Cyriax Physiotherapy in Patients with Tennis Elbow (Lateral Epicondylitis): A Randomized Clinical Trial. Sci. World J. 2012, 2012, 939645. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Orthopaedic Surgeons. Therapeutic Exercise Program for Epicondylitis. Available online: https://orthoinfo.aaos.org/en/recovery/epicondylitis-therapeutic-exercise-program/ (accessed on 27 March 2023).
- Day, J.M.; Lucado, A.M.; Uhl, T.L. A Comprehensive Rehabilitation Program for Treating Lateral Elbow Tendinopathy. Int. J. Sports Phys. Ther. 2019, 14, 818–829. [Google Scholar] [CrossRef] [PubMed]
- Afonso, J.; Clemente, F.M.; Nakamura, F.Y.; Morouço, P.; Sarmento, H.; Inman, R.A.; Ramirez-Campillo, R. The Effectiveness of Post-exercise Stretching in Short-Term and Delayed Recovery of Strength, Range of Motion and Delayed Onset Muscle Soreness: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Physiol. 2021, 12, 677581. [Google Scholar] [CrossRef] [PubMed]
- Sayampanathan, A.A.; Basha, M.; Mitra, A.K. Risk factors of lateral epicondylitis: A meta-analysis. Surgeo 2019, 18, 122–128. [Google Scholar] [CrossRef]
- Seto, E.; Biclar, L. Ambidextrous Sonographic Scanning to Reduce Sonographer Repetitive Strain Injury. J. Diagn. Med. Sonogr. 2008, 24, 127–135. [Google Scholar] [CrossRef]
- Van Eerd, D.; Munhall, C.; Irvin, E.; Rempel, D.; Brewer, S.; van der Beek, A.J.; Dennerlein, J.T.; Tullar, J.; Skivington, K.; Pinion, C.; et al. Effectiveness of workplace interventions in the prevention of upper extremity musculoskeletal disorders and symptoms: An update of the evidence. Occup. Environ. Med. 2015, 73, 62–70. [Google Scholar] [CrossRef]
- Vitoulas, S.; Konstantis, V.; Drizi, I.; Vrouva, S.; Koumantakis, G.A.; Sakellari, V. The Effect of Physiotherapy Interventions in the Workplace through Active Micro-Break Activities for Employees with Standing and Sedentary Work. Healthcare 2022, 10, 2073. [Google Scholar] [CrossRef]
- Choi, S.D.; Rajendran, S.; Ahn, K. Stretch Flex Programs: Effects on the Reduction of Musculoskeletal Disorders & Injuries. Prof. Saf. J. 2017, 62, 38–43. [Google Scholar]
- Lugrís, U.; Michaud, F.; Mouzo, F.; Cuadrado, J. Full-body optical motion capture with real-time estimation of muscle efforts. In Proceedings of the 2nd Portuguese Conference on Multibody System Dynamics, Guimaraes, Portugal, 5–6 December 2022. [Google Scholar]
- Michaud, F.; Lamas, M.; Lugrís, U.; Cuadrado, J. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait. J. Neuroeng. Rehabil. 2021, 18, 17. [Google Scholar] [CrossRef]
- Michaud, F.; Frey-Law, L.A.; Lugrís, U.; Cuadrado, L.; Figueroa-Rodríguez, J.; Cuadrado, J. Applying a muscle fatigue model when optimizing load-sharing between muscles for short-duration high-intensity exercise: A preliminary study. Front. Physiol. 2023, 14, 604. [Google Scholar] [CrossRef] [PubMed]
- Fregly, B.J.; Besier, T.; Lloyd, D.; Delp, S.L.; Banks, S.; Pandy, M.; D’Lima, D. Grand challenge competition to predict in vivo knee loads. J. Orthop. Res. 2011, 30, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Febrer-Nafría, M.; Fregly, B.J.; Font-Llagunes, J.M. Evaluation of Optimal Control Approaches for Predicting Active Knee-Ankle-Foot-Orthosis Motion for Individuals With Spinal Cord Injury. Front. Neurorobotics 2022, 15, 184. [Google Scholar] [CrossRef] [PubMed]
Risk Factors | Mean Scores | SD | Maximum | ||
---|---|---|---|---|---|
Active arm | Wrist | Supination/pronation >45° (%time) | 0.17 | 0.48 | 5 |
Extension amplitude (°) | 2.83 | 1.04 | 5 | ||
Extension velocity angle (°/s) | 4.19 | 1.05 | 5 | ||
Elbow | Extension amplitude (°) | 3.46 | 1.36 | 5 | |
Extension velocity angle (°/s) | 4.00 | 1.30 | 5 | ||
Shoulder | Comfort angle flexion/extension (%time) | 0.46 | 0.40 | 1 | |
Comfort angle lateral elevation (%time) | 0.41 | 0.41 | 1 | ||
Comfort angle internal rotation (%time) | 0.05 | 0.13 | 1 | ||
Second arm | Wrist | Comfort angle flexion/extension (%time) | 0.07 | 0.19 | 1 |
Comfort angle deviation (%time) | 0.62 | 0.39 | 1 | ||
Comfort angle pronation/supination (%time) | 0.14 | 0.27 | 1 | ||
Elbow | Comfort angle flexion/extension (%time) | 0.00 | 0.02 | 1 | |
Shoulder | Comfort angle flexion/extension (%time) | 0.07 | 0.22 | 1 | |
Comfort angle lateral elevation (%time) | 0.82 | 0.60 | 1 | ||
Comfort angle internal rotation (%time) | 0.52 | 0.87 | 1 | ||
Task frequency (rep/min) | 5.00 | / | 5 | ||
Total | 22.81 | 4.35 | 40 |
Risk Factors | Mean Values | SD | ||
---|---|---|---|---|
Active arm | Wrist | Supination/pronation >45° (%time) | 1.73 | 4.83 |
Extension amplitude (°) | 25.57 | 9.53 | ||
Extension velocity angle (°/s) | 187.49 | 64.43 | ||
Elbow | Extension amplitude (°) | 71.55 | 15.62 | |
Extension velocity angle (°/s) | 186.00 | 81.21 | ||
Shoulder | Comfort angle flexion/extension (%time) | 29.36 | 30.68 | |
Comfort angle lateral elevation (%time) | 27.53 | 32.52 | ||
Comfort angle internal rotation (%time) | 2.67 | 7.66 | ||
Second arm | Wrist | Comfort angle flexion/extension (%time) | 3.58 | 10.40 |
Comfort angle deviation (%time) | 41.15 | 32.31 | ||
Comfort angle pronation/supination (%time) | 8.16 | 18.41 | ||
Elbow | Comfort angle flexion/extension (%time) | 0.12 | 1.23 | |
Shoulder | Comfort angle flexion/extension (%time) | 4.98 | 17.85 | |
Comfort angle lateral elevation (%time) | 41.04 | 29.90 | ||
Comfort angle internal rotation (%time) | 13.05 | 21.67 | ||
Task frequency (rep/min) | 25.00 | / |
Risk Factors | Men | Women | p-Value | ||||
---|---|---|---|---|---|---|---|
Mean Scores | SD | Mean Scores | SD | ||||
Active arm | Wrist | Supination/pronation >45° (%time) | 0.19 | 0.52 | 0.14 | 0.40 | 0.31 |
Extension amplitude (°) | 2.75 | 1.04 | 2.99 | 1.03 | 0.14 | ||
Extension velocity angle (°/s) | 4.12 | 1.12 | 4.33 | 0.91 | 0.18 | ||
Elbow | Extension amplitude (°) | 3.04 | 1.38 | 4.25 | 0.86 | 0.00 | |
Extension velocity angle (°/s) | 3.60 | 1.40 | 4.75 | 0.57 | 0.00 | ||
Shoulder | Comfort angle flexion/extension (%time) | 0.37 | 0.38 | 0.64 | 0.38 | 0.00 | |
Comfort angle lateral elevation (%time) | 0.35 | 0.40 | 0.52 | 0.43 | 0.04 | ||
Comfort angle internal rotation (%time) | 0.04 | 0.12 | 0.08 | 0.14 | 0.09 | ||
Second arm | Wrist | Comfort angle flexion/extension (%time) | 0.06 | 0.19 | 0.08 | 0.21 | 0.37 |
Comfort angle deviation (%time) | 0.53 | 0.40 | 0.78 | 0.30 | 0.00 | ||
Comfort angle pronation/supination (%time) | 0.09 | 0.22 | 0.22 | 0.34 | 0.03 | ||
Elbow | Comfort angle flexion/extension (%time) | 0.00 | 0.03 | 0.00 | 0.00 | 0.20 | |
Shoulder | Comfort angle flexion/extension (%time) | 0.09 | 0.26 | 0.04 | 0.11 | 0.09 | |
Comfort angle lateral elevation (%time) | 0.93 | 0.62 | 0.61 | 0.50 | 0.01 | ||
Comfort angle internal rotation (%time) | 0.53 | 0.90 | 0.50 | 0.80 | 0.44 | ||
Task frequency (rep/min) | 5.00 | 0.00 | 5.00 | 0.00 | / | ||
Total | 21.70 | 4.56 | 24.93 | 2.95 | 0.00 |
Risk Factors | Pre | Post | p-Value | ||||
---|---|---|---|---|---|---|---|
Mean Scores | SD | Mean Scores | SD | ||||
Active arm | Wrist | Supination/pronation >45° (%time) | 0.31 | 0.58 | 0.25 | 0.49 | 0.18 |
Extension amplitude (°) | 2.98 | 0.81 | 2.56 | 1.12 | 0.06 | ||
Extension velocity angle (°/s) | 4.39 | 0.77 | 3.96 | 1.02 | 0.03 | ||
Elbow | Extension amplitude (°) | 3.62 | 1.13 | 2.63 | 1.18 | 0.00 | |
Extension velocity angle (°/s) | 4.32 | 0.98 | 3.27 | 1.09 | 0.00 | ||
Shoulder | Comfort angle flexion/extension (%time) | 0.45 | 0.39 | 0.30 | 0.30 | 0.01 | |
Comfort angle lateral elevation (%time) | 0.40 | 0.45 | 0.13 | 0.22 | 0.00 | ||
Comfort angle internal rotation (%time) | 0.01 | 0.03 | 0.00 | 0.00 | 0.09 | ||
Second arm | Wrist | Comfort angle flexion/extension (%time) | 0.06 | 0.16 | 0.00 | 0.01 | 0.04 |
Comfort angle deviation (%time) | 0.61 | 0.39 | 0.25 | 0.33 | 0.00 | ||
Comfort angle pronation/supination (%time) | 0.18 | 0.28 | 0.01 | 0.06 | 0.00 | ||
Elbow | Comfort angle flexion/extension (%time) | 0.02 | 0.06 | 0.01 | 0.09 | 0.46 | |
Shoulder | Comfort angle flexion/extension (%time) | 0.00 | 0.02 | 0.00 | 0.01 | 0.24 | |
Comfort angle lateral elevation (%time) | 0.92 | 0.60 | 0.43 | 0.55 | 0.00 | ||
Comfort angle internal rotation (%time) | 0.60 | 0.73 | 0.16 | 0.65 | 0.00 | ||
Task frequency (rep/min) | 5.00 | 0.00 | 1.00 | 0.00 | 0.00 | ||
Total | 23.87 | 3.58 | 14.96 | 3.82 | 0.00 |
Risk Factors | Pre | Post | p-Value | ||||
---|---|---|---|---|---|---|---|
Mean Values | SD | Mean Values | SD | ||||
Active arm | Wrist | Supination/pronation >45° (%time) | 3.09 | 5.82 | 2.45 | 4.89 | 0.18 |
Extension amplitude (°) | 26.83 | 7.31 | 23.40 | 10.90 | 0.09 | ||
Extension velocity angle (°/s) | 196.12 | 56.30 | 176.82 | 72.78 | 0.15 | ||
Elbow | Extension amplitude (°) | 72.44 | 14.88 | 51.80 | 13.56 | 0.00 | |
Extension velocity angle (°/s) | 186.80 | 56.04 | 135.77 | 54.45 | 0.00 | ||
Shoulder | Comfort angle flexion/extension (%time) | 28.52 | 30.67 | 16.05 | 17.68 | 0.01 | |
Comfort angle lateral elevation (%time) | 25.69 | 32.06 | 6.27 | 11.11 | 0.00 | ||
Comfort angle internal rotation (%time) | 0.42 | 1.57 | 0.01 | 0.05 | 0.09 | ||
Second arm | Wrist | Comfort angle flexion/extension (%time) | 2.76 | 8.14 | 0.06 | 0.32 | 0.04 |
Comfort angle deviation (%time) | 40.43 | 32.35 | 25.24 | 22.94 | 0.00 | ||
Comfort angle pronation/supination (%time) | 9.12 | 14.10 | 1.16 | 2.82 | 0.00 | ||
Elbow | Comfort angle flexion/extension (%time) | 0.76 | 3.21 | 1.37 | 4.42 | 0.29 | |
Shoulder | Comfort angle flexion/extension (%time) | 0.23 | 1.19 | 0.11 | 0.50 | 0.33 | |
Comfort angle lateral elevation (%time) | 46.00 | 30.08 | 42.87 | 27.53 | 0.32 | ||
Comfort angle internal rotation (%time) | 14.99 | 18.28 | 8.15 | 16.26 | 0.07 | ||
Task frequency (rep/min) | 25.00 | 0.00 | 13.00 | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michaud, F.; Pazos, R.; Lugrís, U.; Cuadrado, J. The Use of Wearable Inertial Sensors and Workplace-Based Exercises to Reduce Lateral Epicondylitis in the Workstation of a Textile Logistics Center. Sensors 2023, 23, 5116. https://doi.org/10.3390/s23115116
Michaud F, Pazos R, Lugrís U, Cuadrado J. The Use of Wearable Inertial Sensors and Workplace-Based Exercises to Reduce Lateral Epicondylitis in the Workstation of a Textile Logistics Center. Sensors. 2023; 23(11):5116. https://doi.org/10.3390/s23115116
Chicago/Turabian StyleMichaud, Florian, Roberto Pazos, Urbano Lugrís, and Javier Cuadrado. 2023. "The Use of Wearable Inertial Sensors and Workplace-Based Exercises to Reduce Lateral Epicondylitis in the Workstation of a Textile Logistics Center" Sensors 23, no. 11: 5116. https://doi.org/10.3390/s23115116
APA StyleMichaud, F., Pazos, R., Lugrís, U., & Cuadrado, J. (2023). The Use of Wearable Inertial Sensors and Workplace-Based Exercises to Reduce Lateral Epicondylitis in the Workstation of a Textile Logistics Center. Sensors, 23(11), 5116. https://doi.org/10.3390/s23115116