Rapid Assessment of Fish Freshness for Multiple Supply-Chain Nodes Using Multi-Mode Spectroscopy and Fusion-Based Artificial Intelligence
Abstract
:1. Introduction
Background
2. Materials and Methods
2.1. Materials
2.1.1. Experiment 1: Farmed Atlantic Salmon
2.1.2. Experiment 2: Wild Coho Salmon, Wild Chinook Salmon, Sablefish
2.2. Methods
2.2.1. Experiment 1: Fluorescence Point Spectroscopy; Catabolites Assay
2.2.2. Experiment 2: Line-Scan Spectroscopy in Fluorescence, VisNIR and SWIR Modes
3. Analysis
3.1. Experiment 1
3.2. Experiment 2
3.2.1. Data Pre-Processing
3.2.2. Classification
4. Results
4.1. Experiment 1
4.2. Experiment 2
5. Discussion
5.1. Experiment 1
5.2. Experiment 2
6. Conclusions
7. Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United States Department of Agriculture. How Much Food Waste is There in the United States? 2022. Available online: https://www.usda.gov/foodwaste/faqs (accessed on 8 March 2023).
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture 2020; Sustainability in Action: Rome, Italy, 2020; Volume 2020. [Google Scholar]
- Tavares, J.; Martins, A.; Fidalgo, L.; Lima, V.; Amaral, R.; Pinto, C.; Silva, A.; Saraiva, J. Fresh Fish Degradation and Advances in Preservation Using Physical Emerging Technologies. Foods 2021, 10, 780. [Google Scholar] [CrossRef] [PubMed]
- Tilami, S.K.; Sampels, S. Nutritional Value of Fish: Lipids, Proteins, Vitamins, and Minerals. Rev. Fish. Sci. 2018, 26, 243. [Google Scholar]
- Johns Hopkins University. Nearly Half of U.S. Seafood Supply Goes to Waste, Johns Hopkins Researchers Say. 2015. Available online: https://hub.jhu.edu/2015/09/23/wasted-seafood-supply/ (accessed on 8 March 2023).
- Huss, H.H. Fresh Fish Quality and Quality Changes; Via delle Terme di Caracalla; Food and Agricultural Organization of the United Nations: Rome, Italy, 1988; Available online: https://www.fao.org/3/v7180e/v7180e00.htm (accessed on 8 March 2023).
- Buzby, J.C.; Bentley, J.T.; Padera, B.; Campuzano, J.; Ammon, C. Updated Supermarket Shrink Estimates for Fresh Foods and Their Implications for ERS Loss-Adjusted Food Availability Data; Tech. Rep. EIB-155; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2016. [Google Scholar]
- Binsi, P.K.; Viji, P.; Visnuvinayagam, S.; Ninan, G.; Sangeeta, G.; Triveni, A.; Ravishankar, C.N. Microbiological and shelf life characteristics of eviscerated and vacuum packed freshwater catfish (Ompok pabda) during chill storage. J. Food Sci. Technol. 2015, 52, 1424–1433. [Google Scholar] [CrossRef] [PubMed]
- Malle, P.; Poumeyrol, M. A New Chemical Criterion for the Quality Control of Fish: Trimethylamine/Total Volatile Basic Nitrogen (%). J. Food Prot. 1989, 52, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Olafsdóttir, G.; Martinsdóttir, E.; Oehlenschläger, J.; Dalgaard, P.; Jensen, B.; Undeland, I.; Mackie, I.M.; Henehan, G.; Nielsen, J.; Nilsen, H. Methods to evaluate fish freshness in research and industry. Trends Food Sci. Technol. 1997, 8, 258–265. [Google Scholar] [CrossRef]
- Sakamoto, S.; Putalun, W.; Vimolmangkang, S.; Phoolcharoen, W.; Shoyama, Y.; Tanaka, H.; Morimoto, S. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J. Nat. Med. 2018, 72, 32–42. [Google Scholar] [CrossRef]
- Ohashi, E.; Okamoto, M.; Ozawa, A.; Fujita, T. Characterization of Common Squid Using Several Freshness Indicators. J. Food Sci. 1991, 56, 161–163. [Google Scholar] [CrossRef]
- Hattula, T. Adenosine Triphosphate BREAKDOWN Products as a Freshness Indicator of Some Fish Species and Fish Products. Academic Dissertation, University of Helsinki, Finland 1997. Available online: :https://www.vttresearch.com/sites/default/files/pdf/publications/1997/p297.pdf (accessed on 8 March 2023).
- Martinsen, Ø.G.; Grimnes, S.; Mirtaheri, P. Non-invasive measurements of post-mortem changes in dielectric properties of haddock muscle—A pilot study. J. Food Eng. 2000, 43, 189–192. Available online: https://www-sciencedirect-com.ezproxy.library.und.edu/science/article/pii/S026087749900151X (accessed on 8 March 2023). [CrossRef]
- Franceschelli, L.; Berardinelli, A.; Dabbou, S.; Ragni, L.; Tartagni, M. Sensing Technology for Fish Freshness and Safety: A Review. Sensors 2021, 21, 1373. [Google Scholar] [CrossRef]
- Wu, L.; Pu, H.; Sun, D. Novel techniques for evaluating freshness quality attributes of fish: A review of recent developments. Trends Food Sci. Technol. 2019, 83, 259–273. Available online: https://www.sciencedirect.com/science/article/pii/S0924224418305089 (accessed on 8 March 2023). [CrossRef]
- Müller-Maatsch, J.; van Ruth, S.M. Handheld Devices for Food Authentication and Their Applications: A Review. Foods 2021, 10, 2901. [Google Scholar] [CrossRef]
- Qin, J.; Vasefi, F.; Hellberg, R.S.; Akhbardeh, A.; Isaacs, R.B.; Yilmaz, A.G.; Hwang, C.; Baek, I.; Schmidt, W.F.; Kim, M.S. Detection of fish fillet substitution and mislabeling using multimode hyperspectral imaging techniques. Food Control. 2020, 114, 107234. [Google Scholar] [CrossRef]
- Chauvin, J.; Duran, R.; Tavakolian, K.; Akhbardeh, A.; Mackinnon, N.; Qin, J.; Chan, D.E.; Hwang, C.; Baek, I.; Kim, M.S.; et al. Simulated annealing-based hyperspectral data optimization for fish species classification: Can the number of measured wavelengths be reduced? Appl. Sci. 2021, 11, 10628. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, D.; Pu, H.; Zhu, Z. Development of hyperspectral imaging coupled with chemometric analysis to monitor K value for evaluation of chemical spoilage in fish fillets. Food Chem. 2015, 185, 245–253. Available online: https://www.sciencedirect.com/science/article/pii/S0308814615004835 (accessed on 8 March 2023). [CrossRef]
- Hassoun, A.; Karoui, R. Quality evaluation of fish and other seafood by traditional and nondestructive instrumental methods: Advantages and limitations. Crit. Rev. Food Sci. Nutr. 2017, 57, 1976–1998. [Google Scholar] [CrossRef]
- Hassoun, A.; Shumilina, E.; Di Donato, F.; Foschi, M.; Simal-Gandara, J.; Biancolillo, A. Emerging Techniques for Differentiation of Fresh and Frozen-Thawed Seafoods: Highlighting the Potential of Spectroscopic Techniques. Molecules 2020, 25, 4472. [Google Scholar] [CrossRef]
- Dufour, É.; Frencia, J.P.; Kane, E. Development of a Rapid Method Based on Front-Face Fluorescence Spectroscopy for Monitoring of Fish Freshness. Food Res. Int. 2003, 36, 415–423. [Google Scholar] [CrossRef]
- ElMasry, G.; Nagai, H.; Moria, K.; Nakazawa, N.; Tsuta, M.; Sugiyama, J.; Okazaki, E.; Nakauchi, S. Freshness estimation of intact frozen fish using fluorescence spectroscopy and chemometrics of excitation-emission matrix. Talanta 2015, 143, 145–156. [Google Scholar] [CrossRef]
- Karoui, R.; Hassoun, A.; Ethuin, P. Front face fluorescence spectroscopy enables rapid differentiation of fresh and frozen-thawed sea bass (Dicentrarchus labrax) fillets. J. Food Eng. 2017, 202, 89–98. Available online: https://www.sciencedirect.com/science/article/pii/S0260877417300249 (accessed on 8 March 2023). [CrossRef]
- Omwange, K.A.; Saito, Y.; Al Riza, D.F.; Zichen, H.; Kuramoto, M.; Shiraga, K.; Ogawa, Y.; Kondo, N.; Suzuki, T. Japanese dace (Tribolodon hakonensis) fish freshness estimation using front-face fluorescence spectroscopy coupled with chemometric analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 276, 121209. Available online: https://www-sciencedirect-com.ezproxy.library.und.edu/science/article/pii/S1386142522003584 (accessed on 8 March 2023). [CrossRef]
- Khoshnoudi-Nia, S.; Moosavi-Nasab, M. Prediction of Various Freshness Indicators in Fresh Fillets by one Multi-Spectral Imaging System. Sci. Rep. 2019, 9, 14704. [Google Scholar] [CrossRef] [PubMed]
- McVey, C.; McGrath, T.F.; Haughey, S.A.; Elliott, C.T. A rapid food chain approach for authenticity screening: The development, validation and transferability of a chemometric model using two handheld near infrared spectroscopy (NIRS) devices. Talanta 2021, 222, 121533. Available online: https://www.sciencedirect.com/science/article/pii/S0039914020308249 (accessed on 8 March 2023). [CrossRef] [PubMed]
- McVey, C.; Gordon, U.; Haughey, S.A.; Elliott, C.T. Assessment of the Analytical Performance of Three Near-InfraRed Spectroscopy Instruments (Benchtop, handheld and portable) through the Investigation of Coriander Seed Authenticity. Foods 2021, 10, 956. [Google Scholar] [CrossRef] [PubMed]
- Wehrens, R.; Buydens, L. Self- and Super-Organizing Maps in R: The kohonen Package. J. Stat. Softw. 2007, 21, 1–19. [Google Scholar] [CrossRef]
- Beattie, J.; Esmonde-White, F. Exploration of Principal Component Analysis: Deriving PCA Visually Using Spectra. Appl. Spectrosc. 2021, 75, 361–375. [Google Scholar] [CrossRef]
- Kaiser, H.F. The Application of Electronic Computers to Factor Analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Luong, J.; Male, K.; Masson, C.; Nguyen, A. Hypoxanthine Ratio Determination in Fish Extract Using Capillary Electrophoresis and Immobilized Enzymes. J. Food Sci. 1992, 57, 77–81. [Google Scholar] [CrossRef]
- Jones, N.R. Hypoxanthine and Other Purine-Containing Fractions in Fish Muscle as Indices of Freshness; Food and Agriculture Organization of the United Nations: Rome, Italy, 1964. [Google Scholar]
- Chauvin, J.; Vasefi, F.; Tavakolian, K.; Akhbardeh, A.; MacKinnon, N.; Qin, J.; Chan, D.E.; Kim, M.S. Reconstruction of hyperspectral spectra of fish fillets using multi-wavelength imaging and point spectroscopy. In Sensing for Agriculture and Food Quality and Safety XII; SPIE: San Francisco, CA, USA, 2020. [Google Scholar]
- Ismail, S.; Reza, H.; Salameh, K.; Kashani Zadeh, H.; Vasefi, F. Towards Smart Blockchain IoT-Enabled Fish Supply Chain Framework. Sensors 2023. accepted. [Google Scholar]
Method | Prep | Duration | Cost | In-Situ | Skilled Worker | Destructive | Applicable to Fillets | |
---|---|---|---|---|---|---|---|---|
1 | Sensory | no | seconds | salary | yes | yes | no | yes |
2 | TVBN | yes | hours | lab, equip, sal | no | yes | yes | yes |
3 | ELISA | yes | hours | lab, equip, sal | no | yes | yes | yes |
4 | TVC | yes | hours | lab, equip, sal | no | yes | yes | yes |
5 | Nucleotide/ATP | yes | hours | lab, equip, sal | no | yes | yes | yes |
6 | Electric Properties | no | seconds | device | yes | no | no | no |
7 | RGB Imaging | no | seconds | device | yes | no | no | no |
8 | Spectroscopy | no | seconds | device | yes | no | no | yes |
Classes Day 1,3,7,9,11 | Sablefish#1 | Sablefish #2 | Sablefish #1 Train, Sablefish#2 Test | |||||||||||||||
Single Mode | FL | SWIR | VisNIR | FL | SWIR | VisNIR | FL | SWIR | VisNIR | |||||||||
Train/Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test |
RF | 100 | 71 | 100 | 52 | 100 | 60 | 100 | 71 | 100 | 59 | 100 | 72 | 100 | 50 | 100 | 30 | 100 | 38 |
KNN | 77 | 67 | 63 | 44 | 69 | 49 | 80 | 68 | 66 | 53 | 78 | 65 | 80 | 52 | 68 | 29 | 79 | 34 |
LR | 96 | 93 | 35 | 36 | 59 | 56 | 93 | 91 | 39 | 42 | 65 | 66 | 92 | 69 | 41 | 30 | 64 | 38 |
LDA | 93 | 91 | 100 | 99 | 98 | 95 | 91 | 88 | 100 | 99 | 98 | 96 | 91 | 66 | 99 | 86 | 98 | 85 |
QDA | 100 | 96 | 100 | 96 | 100 | 88 | 100 | 88 | 100 | 95 | 100 | 82 | 99 | 65 | 100 | 78 | 100 | 68 |
Stacking | 97 | 94 | 100 | 100 | 99 | 96 | 95 | 91 | 100 | 99 | 99 | 96 | 94 | 69 | 99 | 85 | 98 | 84 |
Classes: Day 1,3,7,9,11 | Coho Salmon | Chinook Salmon | ||||||||||||||||
Single Mode | FL | SWIR | VisNIR | FL | SWIR | VisNIR | ||||||||||||
Train/Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | ||||||
RF | 100 | 94 | 100 | 47 | 100 | 55 | 100 | 70 | 100 | 52 | 100 | 57 | ||||||
KNN | 97 | 96 | 63 | 39 | 71 | 50 | 84 | 70 | 63 | 41 | 67 | 44 | ||||||
LR | 100 | 98 | 38 | 34 | 45 | 48 | 94 | 92 | 29 | 27 | 40 | 40 | ||||||
LDA | 96 | 97 | 100 | 100 | 94 | 91 | 87 | 86 | 100 | 100 | 98 | 96 | ||||||
QDA | 100 | 98 | 100 | 99 | 100 | 79 | 100 | 91 | 100 | 97 | 100 | 70 | ||||||
Stacking | 100 | 99 | 100 | 100 | 99 | 94 | 96 | 94 | 100 | 100 | 99 | 95 |
Classes: Day 1,3,7,9,11 | Coho Salmon | Chinook Salmon | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Single Mode | FL | SWIR | VisNIR | FL | SWIR | VisNIR | ||||||
Train/Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test |
RF | 100 | 94 | 100 | 47 | 100 | 55 | 100 | 70 | 100 | 52 | 100 | 57 |
KNN | 97 | 96 | 63 | 39 | 71 | 50 | 84 | 70 | 63 | 41 | 67 | 44 |
LR | 100 | 98 | 38 | 34 | 45 | 48 | 94 | 92 | 29 | 27 | 40 | 40 |
LDA | 96 | 97 | 100 | 100 | 94 | 91 | 87 | 86 | 100 | 100 | 98 | 96 |
QDA | 100 | 98 | 100 | 99 | 100 | 79 | 100 | 91 | 100 | 97 | 100 | 70 |
Stacking | 100 | 99 | 100 | 100 | 99 | 94 | 96 | 94 | 100 | 100 | 99 | 95 |
Predicted Day | ||||||
---|---|---|---|---|---|---|
1 | 3 | 7 | 9 | 11 | ||
True Day | 1 | 378 | 0 | 0 | 0 | 0 |
3 | 0 | 368 | 0 | 0 | 0 | |
7 | 0 | 0 | 343 | 9 | 0 | |
9 | 0 | 0 | 65 | 249 | 9 | |
11 | 0 | 0 | 2 | 10 | 308 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashani Zadeh, H.; Hardy, M.; Sueker, M.; Li, Y.; Tzouchas, A.; MacKinnon, N.; Bearman, G.; Haughey, S.A.; Akhbardeh, A.; Baek, I.; et al. Rapid Assessment of Fish Freshness for Multiple Supply-Chain Nodes Using Multi-Mode Spectroscopy and Fusion-Based Artificial Intelligence. Sensors 2023, 23, 5149. https://doi.org/10.3390/s23115149
Kashani Zadeh H, Hardy M, Sueker M, Li Y, Tzouchas A, MacKinnon N, Bearman G, Haughey SA, Akhbardeh A, Baek I, et al. Rapid Assessment of Fish Freshness for Multiple Supply-Chain Nodes Using Multi-Mode Spectroscopy and Fusion-Based Artificial Intelligence. Sensors. 2023; 23(11):5149. https://doi.org/10.3390/s23115149
Chicago/Turabian StyleKashani Zadeh, Hossein, Mike Hardy, Mitchell Sueker, Yicong Li, Angelis Tzouchas, Nicholas MacKinnon, Gregory Bearman, Simon A. Haughey, Alireza Akhbardeh, Insuck Baek, and et al. 2023. "Rapid Assessment of Fish Freshness for Multiple Supply-Chain Nodes Using Multi-Mode Spectroscopy and Fusion-Based Artificial Intelligence" Sensors 23, no. 11: 5149. https://doi.org/10.3390/s23115149
APA StyleKashani Zadeh, H., Hardy, M., Sueker, M., Li, Y., Tzouchas, A., MacKinnon, N., Bearman, G., Haughey, S. A., Akhbardeh, A., Baek, I., Hwang, C., Qin, J., Tabb, A. M., Hellberg, R. S., Ismail, S., Reza, H., Vasefi, F., Kim, M., Tavakolian, K., & Elliott, C. T. (2023). Rapid Assessment of Fish Freshness for Multiple Supply-Chain Nodes Using Multi-Mode Spectroscopy and Fusion-Based Artificial Intelligence. Sensors, 23(11), 5149. https://doi.org/10.3390/s23115149