Piezoresistive Behavior of a Conductive Polyurethane Based-Foam for Real-Time Structural Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Sample Elaboration and Determination of Electrical Resistance
2.3. Quasi-Static Tests: Method
2.4. Strain Rate Dependancy Test Method
2.5. Assessment of the PUF-AC Piezoresistive Response under Impact Test
Epotential (J) | Drop Height (cm) |
---|---|
0.014 | 1 |
0.028 | 2 |
0.057 | 4 |
0.114 | 8 |
0.171 | 12 |
0.227 | 16 |
2.6. Low-Velocity Impacts on Smart Structure: Test Method
3. Results and Discussion
3.1. Piezoresistive Response and Conductive Mechanism of PUF-AC
3.2. Cyclic Compressions: Electromechanical Hysteresis
3.3. Influence of Pre-Stress Condition on Performances
3.4. Strain-Rate Dependency
3.5. Electromechanical Parameter
3.6. Piezoresistivity Behavior during Dynamic Loading
3.7. Low-Velocity Impact on Smart Structure: Results
- t1 (=15.5 ms) is the time at which the hemispherical surface of the impactor reaches the top surface of the SCS (vertical position = 0 mm), with an initiation of the contact force.
- t2 (=22.4 ms) is the time at which all the kinetic energy of the impactor has been transferred to the SCS. The impact indentation reaches 3.6 mm for a maximum force of about 400 N. The energy is then dissipated through longitudinal and transverse waves in the sandwich structure [27]. The PUF-AC detects the impact with a delay corresponding to . A first piezoresistive response is observable at t2 first with a negative peak of the relative resistance (−30%) followed by a wave form of the relative resistance curve with a maximum amplitude of −109%.
- t3 (=31.5 ms) is corresponding to the loss of contact with impactor at the end of the rebound phase [, ]. The PUF-AC final and initial conductivities are similar.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birman, V.; Kardomateas, G.A. Review of current trends in research and applications of sandwich structures. Compos. Part B Eng. 2018, 142, 221–240. [Google Scholar] [CrossRef]
- Elnasri, I. Comportement des matériaux cellulaires sous impact et de panneaux sandwichs sous perforation dynamique. Ph.D. Thesis, École Normale Supérieure de Cachan, Cachan, France, 14 December 2006. [Google Scholar]
- Ivañez, I.; Santiuste, C.; Barbero, E.; Sanchez-Saez, S. Numerical modelling of foam-cored sandwich plates under high-velocity impact. Compos. Struct. 2011, 93, 2392–2399. [Google Scholar] [CrossRef]
- Mesquita, E.; Antunes, P.; Coelho, F.; André, P.; Arêde, A.; Varum, H. Global overview on advances in structural health monitoring platforms. J. Civil. Struct. Health Monit. 2016, 6, 461–475. [Google Scholar] [CrossRef]
- Tayebi, A.; Ul Hoque, M.M. Design of Experiments Optimization of Embedded MEMS Sensors in Composites for Structural Health Monitoring; Smart Structures and Materials: San Diego, CA, USA, 19 August 2003. [Google Scholar]
- Su, Z.; Wang, X.; Chen, Z.; Ye, L.; Wang, D. A built-in active sensor network for health monitoring of composite structures. Smart Mater. Struct. 2006, 15, 1939–1949. [Google Scholar] [CrossRef]
- Montazerian, H.; Rashidi, A.; Milani, A.S.; Hoorfar, M. Integrated Sensors in Advanced Composites: A Critical Review. Crit. Rev. Solid State Mater. Sci. 2020, 45, 187–238. [Google Scholar] [CrossRef]
- Kinet, D.; Mégret, P.; Goossen, K.; Qiu, L.; Heider, D.; Caucheteur, C. Fiber Bragg Grating Sensors toward Structural Health Monitoring in Composite Materials: Challenges and Solutions. Sensors 2014, 14, 7394–7419. [Google Scholar] [CrossRef]
- Meti, S.; Balavalad, K.; Sheeparamatti, B. MEMS Piezoresistive Pressure Sensor: A Survey. IJERA 2016, 6, 23–31. [Google Scholar]
- Liu, H.; Li, Q.; Zhang, S.; Yin, R.; Liu, X.; He, Y.; Dai, K.; Shan, C.; Guo, J.; Liu, C.; et al. Electrically conductive polymer composites for smart flexible strain sensors: A critical review. J. Mater. Chem. C 2018, 6, 12121–12141. [Google Scholar] [CrossRef]
- Hanson, R.A.; Newton, C.N.; Merrell, A.J.; Bowden, A.E.; Seeley, M.K.; Mitchell, U.H.; Mazzeo, B.A.; Fullwood, D.T. Dual-Sensing Piezoresponsive Foam for Dynamic and Static Loading. Sensors 2023, 23, 3719. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, J.; Tolle, C.R.; Zhu, Z. Flexible and Compressible PEDOT:PSS@Melamine Conductive Sponge Prepared via One-Step Dip Coating as Piezoresistive Pressure Sensor for Human Motion Detection. ACS Appl. Mater. Interfaces 2018, 10, 16077–16086. [Google Scholar] [CrossRef]
- Kordas, K.; Pitkänen, O. Piezoresistive Carbon Foams in Sensing Applications. Front. Mater. 2019, 6, 93. [Google Scholar] [CrossRef]
- Jin, F.L.; Zhao, M.; Park, M.; Park, S.J. Recent Trends of Foaming in Polymer Processing: A Review. Polymers 2019, 11, 953. [Google Scholar] [CrossRef]
- Wang, H.; Bernardeschi, I.; Beccai, L. Developing Reliable Foam Sensors with Novel Electrodes. In Proceedings of the IEEE SENSORS, Montreal, QC, Canada, 27–30 October 2019. [Google Scholar]
- Zhong, W.; Ding, X.; Li, W.; Shen, C.; Yadav, A.; Chen, Y.; Bao, M.; Jiang, H.; Wang, D. Facile Fabrication of Conductive Graphene/Polyurethane Foam Composite and Its Application on Flexible Piezo-Resistive Sensors. Polymers 2019, 11, 1289. [Google Scholar] [CrossRef] [PubMed]
- Beccatelli, M.; Villani, M.; Gentile, F.; Bruno, L.; Seletti, D.; Nikolaidou, D.M.; Culiolo, M.; Zappettini, A.; Coppedè, N. All-Polymeric Pressure Sensors Based on PEDOT:PSS-Modified Polyurethane Foam. ACS Appl. Polym. Mater. 2021, 3, 563–572. [Google Scholar] [CrossRef]
- Kausar, A. Polyurethane Composite Foams in High-Performance Applications: A Review. Polym. -Plast. Technol. Eng. 2018, 57, 346–369. [Google Scholar] [CrossRef]
- Zhai, Y.; Yu, Y.; Zhou, K.; Yun, Z.; Huang, W.; Liu, H.; Xia, Q.; Dai, K.; Zheng, G.; Liu, C.; et al. Flexible and wearable carbon black/thermoplastic polyurethane foam with a pinnate-veined aligned porous structure for multifunctional piezoresistive sensors. Chem. Eng. J. 2020, 382, 122985. [Google Scholar] [CrossRef]
- Wu, X.; Han, Y.; Zhang, X.; Zhou, Z.; Lu, C. Large-Area Compliant, Low-Cost, and Versatile Pressure-Sensing Platform Based on Microcrack-Designed Carbon Black@Polyurethane Sponge for Human-Machine Interfacing. Adv. Funct. Mater. 2016, 26, 6246–6256. [Google Scholar] [CrossRef]
- Boland, C.S.; Khan, U.; Binions, M.; Barwich, S.; Boland, J.B.; Weaire, D.; Coleman, J.N. Graphene-coated polymer foams as tuneable impact sensors. Nanoscale 2018, 10, 5366–5375. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Zhang, S.; Sun, K.; Liu, H.; Chen, X.; Zheng, Y.; Shi, X.; Zhang, D.; Mi, L.; Liu, C.; Shen, C. Enhanced piezoresistive performance of conductive WPU/CNT composite foam through incorporating brittle cellulose nanocrystal. Chem. Eng. J. 2020, 387, 124045. [Google Scholar] [CrossRef]
- Tong, J.; Wang, N.; Wang, Q.; Chen, S.; Sheng, B. Improved sensitive conductive sponge sensors with tunnel-crack broadening for pressure, humidity and temperature sensing applications. Sens. Actuators B Chem. 2022, 358, 131497. [Google Scholar] [CrossRef]
- Shaw, M.T.; MacKnight, W.J. Introduction to Polymer Viscoelasticity, 3rd ed.; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Hanson, D.E.; Hawley, M.; Houlton, R.; Chitanvis, K.; Rae, P.; Orler, E.B.; Wrobleski, D.A. Stress softening experiments in silica-filled polydimethylsiloxane provide insight into a mechanism for the Mullins effect. Polymer 2005, 46, 10989–10995. [Google Scholar] [CrossRef]
- Amith Kumar, S.J.; Ajith Kumar, S.J. Low-velocity impact damage and energy absorption characteristics of stiffened syntactic foam core sandwich composites. Constr. Build. Mater. 2020, 246, 118412. [Google Scholar] [CrossRef]
Samples | R0 [kΩ] | (ΔR/R0)max | Elasticity | Plateau | Densification | |||
---|---|---|---|---|---|---|---|---|
Sε | Sσ | Sε | Sσ | Sε | Sσ | |||
Free | 5.81 | 49.63% | 1.46 | 0.05 kPa−1 | 0.84 | 0.22 kPa−1 | −1.27 | 0.04 kPa−1 |
Pre-stress | 5.71 | 41.35% | 0.62 | 0.02 kPa−1 | 0.71 | 0.19 kPa−1 | −0.86 | 0.03 kPa−1 |
Strain Rate [s−1] | Young’s Modulus [kPa] | (ΔR/R)max | Elasticity | Plateau | Densification | |||
---|---|---|---|---|---|---|---|---|
Sε | Sσ | Sε | Sσ | Sε | Sσ | |||
0.01 | 19.63 | 17.17% | 0.487 | 0.025 kPa−1 | 0.223 | 0.077 kPa−1 | −0.411 | −0.026 kPa−1 |
0.1 | 22.881 | 13.89% | 0.446 | 0.019 kPa−1 | 0.211 | 0.074 kPa−1 | −0.454 | −0.026 kPa−1 |
1 | 31.058 | 10.76% | 0.334 | 0.008 kPa−1 | 0.141 | 0.037 kPa−1 | −0.436 | −0.02 kPa−1 |
10 | 32.35 | 9.97% | 0.287 | 0.002 kPa−1 | 0.112 | 0.044 kPa−1 | −0.413 | −0.005 kPa−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poirot, A.; Bedrici, N.; Walrick, J.-C.; Arrigoni, M. Piezoresistive Behavior of a Conductive Polyurethane Based-Foam for Real-Time Structural Monitoring. Sensors 2023, 23, 5161. https://doi.org/10.3390/s23115161
Poirot A, Bedrici N, Walrick J-C, Arrigoni M. Piezoresistive Behavior of a Conductive Polyurethane Based-Foam for Real-Time Structural Monitoring. Sensors. 2023; 23(11):5161. https://doi.org/10.3390/s23115161
Chicago/Turabian StylePoirot, Antoine, Nacera Bedrici, Jean-Christophe Walrick, and Michel Arrigoni. 2023. "Piezoresistive Behavior of a Conductive Polyurethane Based-Foam for Real-Time Structural Monitoring" Sensors 23, no. 11: 5161. https://doi.org/10.3390/s23115161
APA StylePoirot, A., Bedrici, N., Walrick, J. -C., & Arrigoni, M. (2023). Piezoresistive Behavior of a Conductive Polyurethane Based-Foam for Real-Time Structural Monitoring. Sensors, 23(11), 5161. https://doi.org/10.3390/s23115161