New Water-Soluble Poly(propylene imine) Dendrimer Modified with 4-Sulfo-1,8-naphthalimide Units: Sensing Properties and Logic Gates Mimicking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Potassium 2-(3-(Dimethylamino)propyl)-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinoline-6-sulfonate SNIM
2.2. Synthesis of 4-Sulfo-1.8-naphalimide Based PPI Dendrimer SNID
3. Results and Discussion
3.1. Design and Synthesis of the Probe
3.2. Photophysical Characteristics
3.3. Solvatochromism of SNIM
3.4. Solvatochromism of Dendrimer SNID
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Inoue, K. Functional dendrimers, hyperbranched and star polymers. Prog. Polym. Sci. 2000, 25, 453–571. [Google Scholar] [CrossRef]
- Buhleier, E.; Wehner, W.; Vögtle, F. “Cascade” and “Nonskid-Chain-like” Syntheses of Molecular Cavity Topologies. Synthesis 1978, 2, 155–158. [Google Scholar] [CrossRef]
- Tomalia, D.A.; Barker, H.; Dewald, J.R.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym. J. 1985, 17, 117–132. [Google Scholar] [CrossRef]
- Tomalia, D.A.; Barker, H.; Dewald, J.R.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Dendritic macromolecules: Synthesis of starburst dendrimers. Macromolecules 1986, 19, 2466–2468. [Google Scholar] [CrossRef]
- Tomalia, D.A. Birth of a new macromolecular architecture: Dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog. Polym. Sci. 2005, 30, 294–324. [Google Scholar] [CrossRef]
- Cuadrado, I.; Morán, M.; Casado, C.M.; Alonso, B.; Losada, J. Organometallic den-drimers with transition metals. Coord. Chem. Rev. 1999, 193–195, 395–445. [Google Scholar] [CrossRef]
- Madaan, K.; Kumar, S.; Poonia, N.; Lather, V.; Pandita, D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci. 2014, 6, 139–150. [Google Scholar] [CrossRef]
- Joshi, N.; Grinstaff, M. Applications of dendrimers in tissue engineering. Curr. Top. Med. Chem. 2008, 8, 1225–1236. [Google Scholar] [CrossRef]
- Liu, K.; Xu, Z.; Yin, M. Perylenediimide-cored dendrimers and their bioimaging and gene delivery applications. Prog. Polym. Sci. 2015, 46, 25–54. [Google Scholar] [CrossRef]
- Ouali, A.; Laurent, R.; Turrin, C.-O.; Majoral, J.-P. Coordination chemistry with phosphorus dendrimers. Applications as catalysts, for materials, and in biology. Coord. Chem. Rev. 2016, 308, 478–497. [Google Scholar] [CrossRef]
- Wolinsky, J.B.; Grinstaff, M.W. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv. Drug Deliv. Rev. 2008, 60, 1037–1055. [Google Scholar] [CrossRef] [PubMed]
- Balzani, V.; Ceroni, P.; Maestri, M.; Vichinelli, V. Light-harvesting dendrimers. Curr. Opin. Chem. Biol. 2003, 7, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Balzaniw, V.; Belgamini, G.; Ceroni, P.; Wogle, F. Electronic spectroscopy of metal complexes with dendritic ligands. Coord. Chem. Rev. 2007, 251, 525–535. [Google Scholar] [CrossRef]
- Bargossi, C.; Fiorni, M.C.; Montalti, M.; Prodi, L.; Zaccheroni, N. Recent developments in transition metal ion detection by luminescent chemosensors. Coord. Chem. Rev. 2000, 208, 17–32. [Google Scholar] [CrossRef]
- Balzani, V.; Ceroni, P.; Gestermann, S.; Kauffmann, C.; Gorka, M.; Vögtle, F. Dendrimers as fluorescent sensors with signal amplification. Chem. Commun. 2000, 853–854. [Google Scholar] [CrossRef]
- Vögtle, F.; Gestermann, S.; Kauffmann, C.; Ceroni, P.; Vicinelli, V.; De Cola, L.; Balzani, V. Poly(Propylene Amine) Dendrimers with Peripheral Dansyl Units: Protonation, Absorption Spectra, Photophysical Properties, Intradendrimer Quenching, and Sensitization Processes. J. Am. Chem. Soc. 1999, 121, 12161–12166. [Google Scholar] [CrossRef]
- Li, C.; Han, L.; Bai, H.; Zhang, S.; Wang, X.; Li, Y.; Ma, H. Synthesis and branching structure detection of long-subchain hyperbranched polymers via pyrene-labelled methodology. Polymer 2022, 240, 124479. [Google Scholar] [CrossRef]
- Tsuda, K.; Dol, G.C.; Gensch, T.; Hofkens, J.; Latterini, L.; Weener, J.W.; Meijer, E.W.; De Schryver, F.C. Fluorescence from Azobenzene Functionalized Poly(propylene imine) Dendrimers in Self-Assembled Supramolecular Structures. J. Am. Chem. Soc. 2000, 122, 3445–3452. [Google Scholar] [CrossRef]
- Pashaei-Sarnaghi, R.; Najafi, F.; Taghavi-Kahagh, A.; Salami-Kalajahi, M.; Roghani-Mamaqani, H. Synthesis, photocross linking, and self-assembly of coumarin-anchored poly(amidoamine) dendrimer for smart drug delivery system. Eur. Polym. J. 2021, 158, 110686. [Google Scholar] [CrossRef]
- Adronov, A.; Gilat, S.L.; Frechet, J.M.J.; Ohta, K.; Neuwahl, F.V.R.; Fleming, G.R. Light Harvesting and Energy Transfer in Laser−Dye-Labeled Poly(aryl ether) Dendrimers. J. Am. Chem. Soc. 2000, 122, 1175–1185. [Google Scholar] [CrossRef]
- Grabchev, I.; Qian, X.; Bojinov, V.; Xiao, Y.; Zhang, W. Synthesis and photophysical properties of 1,8-naphthalimide-labelled PAMAM as PET sensors of protons and of transition metal ions. Polymer 2002, 43, 5731–5736. [Google Scholar] [CrossRef]
- Grabchev, I.; Chovelon, J.-M.; Qian, X. A polyamidoamine dendrimer with peripheral 1,8-naphthalimide groups capable of acting as a PET fluorescent sensor for metal cations. New J. Chem. 2003, 27, 337–340. [Google Scholar] [CrossRef]
- Grabchev, I.; Soumillion, J.-P.; Muls, B.; Ivanova, G. Poly(amidoamine) dendrimer peripherally modified with 4-N,N-dimethylaminoethyleneamino-1,8-naphthalimide as a sensor of metal cations and protons. Photochem. Photobiol. Sci. 2004, 3, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Sali, S.; Grabchev, I.; Chovelov, J.-M.; Ivanova, G. Selective sensors for Zn2+ cations based on new green fluorescent poly(amidoamine) dendrimers peripherally modified with 1,8-naphthalimides. Spectrochim. Acta Part A 2006, 65, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Grabchev, I.; Staneva, D.; Betcheva, R. Sensor activity, photodegradation and photostabilisation of a PAMAM dendrimer comprising 1,8-naphthalimide functional groups in its periphery. Polym. Degrad. Stab. 2006, 91, 2257–2264. [Google Scholar] [CrossRef]
- Grabchev, I.; Chovelon, J.-M.; Nedelcheva, A. Green fluorescence poly(amidoamine) dendrimer functionalized with 1,8-naphthalimide units as potential sensor for metal cations. J. Photochem. Photobiol. A Chem. 2006, 183, 9–14. [Google Scholar] [CrossRef]
- Staneva, D.; Angelova, S.; Vasileva-Tonkova, E.; Grozdanov, P.; Nikolova, I.; Grabchev, I. Synthesis, photophysical characterisation and antimicrobial activity of a new anionic PAMAM dendrimer. J. Photochem. Photobiol. A 2020, 403, 112878. [Google Scholar] [CrossRef]
- Manov, H.; Staneva, D.; Vasileva-Tonkova, E.; Alexandrova, R.; Stoyanova, R.; Kukeva, R.; Stoyanov, S.; Grabchev, I. A New Cu(II) Complex of PAMAM Dendrimer Modified with 1,8-Naphthalimide: Antibacterial and Anticancer Activity. Biointerface Res. Appl. Chem. 2022, 12, 5534–5547. [Google Scholar] [CrossRef]
- Canonico, B.; Cangiotti, M.; Montanari, M.; Papa, S.; Fusi, V.; Giorgi, L.; Ciacci, C.; Ottaviani, M.F.; Staneva, D.; Grabchev, I. Characterization of a fluorescent 1,8-naphthalimide-functionalized PAMAM dendrimer and its Cu(ii) complexes as cytotoxic drugs: EPR and biological studies in myeloid tumor cells. Biol. Chem. 2022, 403, 345–360. [Google Scholar] [CrossRef]
- Staneva, D.; Manov, H.; Vasileva-Tonkova, E.; Kukeva, R.; Stoyanova, R.; Grabchev, I. Enhancing the antibacterial activity of PAMAM dendrimer modified with 1,8-naphthalimides and its copper complex via light illumination. Polym. Adv. Technol. 2022, 33, 3163–3172. [Google Scholar] [CrossRef]
- Grabchev, I.; Bosch, P.; McKenna, M.; Staneva, D. A new colorimetric and fluorimetric sensor for metal cations based on poly(propylene amine) dendrimer modified with 1,8-naphthalimide. J. Photochem. Photobiol. A Chem. 2008, 201, 75–80. [Google Scholar] [CrossRef]
- Grabchev, I.; Bosch, P.; McKenna, M.; Nedelcheva, A. Synthesis and spectral properties of new green fluorescent poly(propyleneimine) dendrimers modified with 1,8-naphthalimide as sensors for metal cations. Polymer 2007, 48, 6755–6762. [Google Scholar] [CrossRef]
- Grabchev, I.; Dumas, S.; Chovelon, J.-M.; Nedelcheva, A. First generation poly(propyleneimine) dendrimers functionalised with 1,8-naphthalimide units as fluorescence sensors for metal cations and protons. Tetrahedron 2008, 64, 2113–2119. [Google Scholar] [CrossRef]
- Staneva, D.; Manov, H.; Yordanova, S.; Stoyanov, S.; Grabchev, I. Synthesis, spectral properties and antimicrobial activity of a new cationic water-soluble pH-dependent poly(propylene imine) dendrimer modified with 1,8-naphthalimides. Luminescence 2020, 35, 947–954. [Google Scholar] [CrossRef]
- Yang, L.; Yang, W.; Xu, D.; Zhang, Z.; Liu, A. A highly selective and sensitive Fe3+ fluorescent sensor by assembling three 1, 8-naphthalimide fluorophores with a tris(aminoethylamine) ligand. Dyes Pigm. 2013, 97, 168–174. [Google Scholar] [CrossRef]
- Dodangeh, M.; Gharanjig, K.; Arami, M. A novel Ag+ cation sensor based on polyamidoamine dendrimer modified with 1, 8-naphthalimide derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 154, 207–214. [Google Scholar] [CrossRef]
- Said, A.; Georgiev, N.; Bojinov, V. Synthesis of a single 1,8-naphthalimide fluorophore as a molecular logic lab for simultaneously detecting of Fe3+, Hg2+ and Cu2+. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 196, 76–82. [Google Scholar] [CrossRef]
- Said, A.; Georgiev, N.; Bojinov, V. A fluorescent bichromophoric “off-on-off” pH probe as a molecular logic device (half-subtractor and digital comparator) operating by controlled PET and ICT processes. Dyes Pigm. 2019, 162, 377–384. [Google Scholar] [CrossRef]
- Staneva, D.; Said, A.I.; Vasileva-Tonkova, E.; Grabchev, I. Enhanced Photodynamic Efficacy Using 1,8-Naphthalimides: Potential Application in Antibacterial Photodynamic Therapy. Molecules 2022, 27, 5743. [Google Scholar] [CrossRef]
- Balasaravanan, R.; Sadhasivam, V.; Sivaraman, G.; Siva, A. Triphenylamino α-Cyanovinyl-and cyanoaryl-based fluorophores: Solvatochromism, aggregation-induced emission and electrochemical properties. Asian J. Org. Chem. 2016, 5, 399–410. [Google Scholar] [CrossRef]
- Jiang, S.; Qiu, J.; Chen, Y.; Guo, H.; Yang, F. Luminescent columnar liquid crystals based on AIE tetraphenylethylene with hydrazone groups bearing multiple alkyl chains. Dyes Pigm. 2018, 159, 533–541. [Google Scholar] [CrossRef]
- Lee, W.W.; Zhao, Z.; Cai, Y.; Xu, Z.; Yu, Y.; Xiong, Y.; Kwok, R.T.K.; Chen, Y.; Leung, N.L.C.; Ma, D.; et al. Facile access to deep red/near-infrared emissive AIEgens for efficient non-doped OLEDs. Chem. Sci. 2018, 9, 6118–6125. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Qiu, J.; Lin, L.; Guo, H.; Yang, F. Circularly polarized luminescence based on columnar self-assembly of tetraphenylethylene with multiple cholesterol units. Dyes Pigm. 2019, 163, 363–370. [Google Scholar] [CrossRef]
- Qiu, J.; Jiang, S.; Lin, B.; Guo, H.; Yang, F. An unusual AIE fluorescent sensor for sequentially detecting Co2+-Hg2+-Cu2+ based on diphenylacrylonitrile Schiff-base derivative. Dyes Pigm. 2019, 170, 107590. [Google Scholar] [CrossRef]
- Birks, J.; Dyson, D.; Munro, I. ’Excimer’ fluorescence II. Lifetime studies of pyrene solutions. Proc. R. Soc. Lond. Ser. A 1963, 275, 575–588. [Google Scholar] [CrossRef]
- Winnik, F.M. Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media. Chem. Rev. 1993, 93, 587–614. [Google Scholar] [CrossRef]
- Ghosh, A.; Sengupta, A.; Chattopadhyay, A.; Das, D. Lysine triggered ratiometric conversion of dynamic to static excimer of a pyrene derivative: Aggregation-induced emission, nanomolar detection and human breast cancer cell (MCF7) imaging. Chem. Commun. 2015, 51, 11455–11458. [Google Scholar] [CrossRef]
- Haedler, A.T.; Misslitz, H.; Buehlmeyer, C.; Albuquerque, R.Q.; Köhler, A.; Schmidt, H. Controlling the π-Stacking Behavior of Pyrene Derivatives: Influence of H-Bonding and Steric Effects in Different States of Aggregation. ChemPhysChem 2013, 14, 1818–1829. [Google Scholar] [CrossRef]
- Yang, J.; Lin, C.; Hwang, C. Cu2+-Induced Blue Shift of the Pyrene Excimer Emission: A New Signal Transduction Mode of Pyrene Probes. Org. Lett. 2001, 3, 889–892. [Google Scholar] [CrossRef]
- Dabestani, R.; Kidder, M.; Buchanan, A.C. Pore Size Effect on the Dynamics of Excimer Formation for Chemically Attached Pyrene on Various Silica Surfaces. J. Phys. Chem C 2008, 112, 11468–11475. [Google Scholar] [CrossRef]
- Jung, H.S.; Verwilst, P.; Kim, W.Y.; Kim, J.S. Fluorescent and colorimetric sensors for the detection of humidity or water content. Chem. Soc. Rev. 2016, 45, 1242–1256. [Google Scholar] [CrossRef]
- Que, E.L.; Domaille, D.W.; Chang, C.J. Metals in ueurobiology: Probing their chemistry and biology with molecular imaging. Chem. Rev. 2008, 108, 1517–1549. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, X.I.; Wang, L.; Cheng, Y.; Xie, G. Effect of water content on the kinetics of p-xylene liquid-phase catalytic oxidation to terephthalic acid. Ind. Eng. Chem. Res. 2005, 44, 4518–4522. [Google Scholar] [CrossRef]
- Williams, D.B.G.; Lawton, M. Drying of organic solvents: Quantitative evaluation of the efficiency of several desiccants. J. Org. Chem. 2010, 75, 8351–8354. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.Y. Automation of Karl Fischer water titration by flow injection sampling. Anal. Chem. 1990, 62, 2504–2506. [Google Scholar] [CrossRef]
- Oguchi, R.; Yamaguchi, K.; Shibamoto, T. Determination of water content in common organic solvents by a gas chromatograph equipped with a megabore fused-silica column and a thermal conductivity detector. J. Chromatogr. Sci. 1988, 26, 588–590. [Google Scholar] [CrossRef]
- Sun, H.; Wang, B.; DiMagno, S.G. A method for detecting water in organic solvents. Org. Lett. 2008, 10, 4413–4416. [Google Scholar] [CrossRef]
- Enoki, T.; Ooyama, Y. Colorimetric and ratiometric fluorescence sensing of water based on 9-methyl pyrido[3,4-b]indole-boron trifluoride complex. Dalton Trans. 2019, 48, 2086–2092. [Google Scholar] [CrossRef]
- Kumar, P.; Ghosh, A.; Jose, D.A. A simple colorimetric sensor for the detection of moisture in organic solvents and building materials: Applications in rewritable paper and fingerprint imaging. Analyst 2019, 144, 594–601. [Google Scholar] [CrossRef]
- Nootem, J.; Sattayanon, C.; Namuangruk, S.; Rashatasakhon, P.; Wattanathana, W.; Tumcharern, G.; Chansaenpak, K. Solvatochromic triazaborolopyridinium probes toward ultra-sensitive trace water detection in organic solvents. Dyes Pigm. 2020, 181, 108554. [Google Scholar] [CrossRef]
- Guliyev, R.; Ozturk, S.; Kostereli, Z.; Akkaya, E. From virtual to physical: Integration of chemical logic gates. Angew. Chem. Int. Ed. 2011, 50, 9826–9831. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-T.; Wu, G.-Y.; Qu, W.-J.; Li, Q.; Lou, J.-C.; Lin, Q.; Yao, H.; Zhang, Y.-M.; Wei, T.-B. A colorimetric and reversible fluorescent chemosensor for Ag+ in aqueous solution and its application in IMPLICATION logic gate. Sens. Actuators B Chem. 2017, 239, 671–678. [Google Scholar] [CrossRef]
- Said, A.; Georgiev, N.; Bojinov, V. A smart chemosensor: Discriminative multidetection and various logic operations in aqueous solution at biological pH. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 223, 117304. [Google Scholar] [CrossRef] [PubMed]
- Said, A.; Georgiev, N.; Bojinov, V. Sensor activity and logic behavior of dihydroxyphenylhydrazone derivative as a chemosensor for Cu2+ determination in alkaline aqueous solutions. J. Photochem. Photobiol. A Chem. 2015, 311, 16–24. [Google Scholar] [CrossRef]
- Arabahmadi, R.; Orojloo, M.; Amani, S. Three and four inputs combinational logic circuits based on a azo-azomethine chemosensor for the detection of Ni2+ and CN−/OAC− ions: Experimental and DFT studies. J. Photochem. Photobiol. A Chem. 2023, 434, 114231. [Google Scholar] [CrossRef]
- Said, A.; Georgiev, N.; Bojinov, V. Low Molecular Weight Probe for Selective Sensing of PH and Cu2+ Working as Three INHIBIT Based Digital Comparator. J. Fluoresc. 2022, 32, 405–417. [Google Scholar] [CrossRef]
- Said, A.I.; Georgiev, N.I.; Bojinov, V.B. A novel dual naked eye colorimetric and fluorescent pH chemosensor and its ability to execute three INHIBIT based digital comparator. Dyes Pigm. 2022, 205, 110489. [Google Scholar] [CrossRef]
- Said, A.I.; Georgiev, N.I.; Hamdan, S.A.; Bojinov, V.B. A chemosensoring molecular lab for various analytes and its ability to execute a molecular logical digital comparator. J. Fluoresc. 2019, 29, 1431–1443. [Google Scholar] [CrossRef] [PubMed]
- Arabahmadi, R. Antipyrine-based Schiff base as fluorogenic chemosensor for recognition of Zn2+, Cu2+ and H2PO4− in aqueous media by comparator, half subtractor and integrated logic circuits. J. Photochem. Photobiol. A Chem. 2022, 426, 113762. [Google Scholar] [CrossRef]
- Grabchev, I.; Staneva, D.; Betcheva, R. Fluorescent dendrimers as sensors for biologically important metal cations. Curr. Med. Chem. 2012, 29, 4976–4983. [Google Scholar] [CrossRef]
- Wang, B.-B.; Zhang, X.; Jia, X.-R.; Li, Z.-C.; Ji, Y.; Yang, L.; Wei, Y. Fluorescence and Aggregation Behavior of Poly (Amidoamine) Dendrimers Peripherally Modified with Aromatic Chromophores: The Effect of Dendritic Architectures. J. Am. Chem. Soc. 2004, 126, 15180–15194. [Google Scholar] [CrossRef] [PubMed]
Solvents | Water | DMSO | DMF | Ethanol | DCM | THF | Dioxane |
---|---|---|---|---|---|---|---|
SNIM | |||||||
Dielectric constant (25 °C) | 78.35 | 47.1 | 37.1 | 24.5 | 8.93 | 7.58 | 2.25 |
λabs.(nm) | 339, 350 | 328, 342, 358 | 328, 341, 357 | 327, 337, 354 | 326, 338, 354 | 325, 339, 355 | 323, 336, 353 |
λem. (nm) | 393 | 389 | 380 | 387 | 387 | 405 | 367 |
Stockes shift (cm−1) | 3126 | 2226 | 1695 | 2409 | 2409 | 3478 | 1081 |
ε (l mol−1cm−1) | 11,300 11,100 | 9100 12,400 11,000 | 8900 12,300 11,000 | 9200 11,700 10,500 | 8200 10,500 9300 | 9100 11,600 10,500 | 6900 9300 8600 |
ΦF | 0.237 a | 0.004 | 0.001 | 0.005 | 0.007 | 0.017 | 0.005 |
SNID | |||||||
λabs. (nm) | 342 | 327, 342, 357 | 326, 341, 357 | 326, 338, 354 | 324, 338, 354 | 325, 338, 354 | 324, 338, 354 |
λem. (nm) | 393,474 | 387 | 379 | 388 | - | 404 | 378 |
(cm−1) | 8143 | 2171 | 1626 | 2475 | - | 3496 | 1794 |
ε (l mol−1cm−1) | 47,800 | 55,300 73,600 64,500 | 52,300 71,000 63,200 | 42,500 52,900 46,100 | 42,300 48,600 40,400 | 48,200 55,300 44,100 | 45,500 54,500 45,300 |
ΦF | 0.132 a | 0.001 | 0.001 | 0.0035 | - | 0.0083 | 0.0036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Said, A.I.; Staneva, D.; Grabchev, I. New Water-Soluble Poly(propylene imine) Dendrimer Modified with 4-Sulfo-1,8-naphthalimide Units: Sensing Properties and Logic Gates Mimicking. Sensors 2023, 23, 5268. https://doi.org/10.3390/s23115268
Said AI, Staneva D, Grabchev I. New Water-Soluble Poly(propylene imine) Dendrimer Modified with 4-Sulfo-1,8-naphthalimide Units: Sensing Properties and Logic Gates Mimicking. Sensors. 2023; 23(11):5268. https://doi.org/10.3390/s23115268
Chicago/Turabian StyleSaid, Awad I., Desislava Staneva, and Ivo Grabchev. 2023. "New Water-Soluble Poly(propylene imine) Dendrimer Modified with 4-Sulfo-1,8-naphthalimide Units: Sensing Properties and Logic Gates Mimicking" Sensors 23, no. 11: 5268. https://doi.org/10.3390/s23115268
APA StyleSaid, A. I., Staneva, D., & Grabchev, I. (2023). New Water-Soluble Poly(propylene imine) Dendrimer Modified with 4-Sulfo-1,8-naphthalimide Units: Sensing Properties and Logic Gates Mimicking. Sensors, 23(11), 5268. https://doi.org/10.3390/s23115268