Binary-Phase vs. Frequency Modulated Radar Measured Performances for Automotive Applications
Abstract
:1. Introduction
2. FMCW and Binary-PMCW Radar Signals Description
2.1. FMCW Radar
2.2. Binary-PMCW Radar
3. FMCW and Binary-PMCW Systems Description
3.1. FMCW
3.2. Binary-PMCW
4. FMCW and binary-PMCW Radar Parameters Description
4.1. FMCW
4.2. Binary-PMCW Complementary Code Sequences
4.3. Binary-PMCW
4.4. Power Budget Analysis
5. Test Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uhnder-Digital Code Modulation (DCM), Radar for Automotive Application. Available online: https://www.uhnder.com/images/data/DCM_Radar_for_Automotive_Application_Final.pdf (accessed on 11 October 2022).
- Mishra, K.V.; Bhavani Shankar, M.; Koivunen, V.; Ottersten, B.; Vorobyov, S.A. Toward Millimeter Wave Joint Radar-Communications: A Signal Processing Perspective. IEEE Signal Process. Mag. 2019, 36, 100–114. [Google Scholar] [CrossRef]
- Zhang, J. Andrew and Liu, Fan and Masouros, Christos and Heath, Robert W. and Feng, Zhiyong and Zheng, Le and Petropulu, Athina An Overview of Signal Processing Techniques for Joint Communication and Radar Sensing. IEEE J. Sel. Top. Signal Process. 2021, 36, 1295–1315. [Google Scholar] [CrossRef]
- Liu, C.; Liu, S.; Zhang, C.; Huang, Y.; Wang, H. Multipath propagation analysis and ghost target removal for FMCW automotive radars. In Proceedings of the IET International Radar Conference (IET IRC 2020), Chongqing, China, 4–6 November 2020; Volume 2020, pp. 330–334. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, K.; Liu, X.; Jin, J.; Zhou, J. A 24 GHz MIMO PMCW Automotive Radar with Doppler Compensation. In Proceedings of the 2021 IEEE MTT-S International Wireless Symposium (IWS), Nanjing, China, 23–26 May 2021; pp. 1–3. [Google Scholar] [CrossRef]
- Bourdoux, A.; Parashar, K.; Bauduin, M. Phenomenology of mutual interference of FMCW and PMCW automotive radars. In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Washington, DC, USA, 8–12 May 2017; pp. 1709–1714. [Google Scholar]
- Beise, H.P.; Stifter, T.; Schröder, U. Virtual interference study for FMCW and PMCW radar. In Proceedings of the 2018 11th German Microwave Conference (GeMiC), Freiburg, Germany, 12–14 March 2018; pp. 351–354. [Google Scholar] [CrossRef]
- Bourdoux, A.; Ahmad, U.; Guermandi, D.; Brebels, S.; Dewilde, A.; Thillo, W.V. PMCW waveform and MIMO technique for a 79 GHz CMOS automotive radar. In Proceedings of the 2016 IEEE Radar Conference (RadarConf), Philadelphia, PA, USA, 2–6 May 2016; pp. 1–5. [Google Scholar]
- Uhnder s80 Chip PMCW Automotive Band Radar. Available online: https://www.uhnder.com/images/data/S80_PTB_Rev1.0_May_5_2022_.pdf (accessed on 15 October 2022).
- Guermandi, D.; Shi, Q.; Dewilde, A.; Derudder, V.; Ahmad, U.; Spagnolo, A.; Ocket, I.; Bourdoux, A.; Wambacq, P.; Craninckx, J.; et al. A 79 GHz 2 × 2 MIMO PMCW Radar SoC in 28 nm CMOS. IEEE J. Solid-State Circuits 2017, 52, 2613–2626. [Google Scholar] [CrossRef]
- Texas Instrument Site, AWR1843 Product Page. Available online: https://www.ti.com/product/AWR1843 (accessed on 11 October 2022).
- Hakobyan, G.; Yang, B. High-Performance Automotive Radar: A Review of Signal Processing Algorithms and Modulation Schemes. IEEE Signal Process. Mag. 2019, 36, 32–44. [Google Scholar] [CrossRef]
- Jankiraman, M. FMCW Radar Design; Arthec-House: Norwood, MA, USA, 2018. [Google Scholar]
- Bauduin, M.; Bourdoux, A. Mixed-Signal Transmitter Leakage Cancellation for PMCW MIMO Radar. In Proceedings of the 2018 15th European Radar Conference (EuRAD), Madrid, Spain, 26–28th September 2018; pp. 293–296. [Google Scholar] [CrossRef]
- Van Thillo, W.; Giannini, V.; Guermandi, D.; Brebels, S.; Bourdoux, A. Impact of ADC clipping and quantization on phase-modulated 79 GHz CMOS radar. In Proceedings of the 2014 11th European Radar Conference, Rome, Italy, 8–10 October 2014; pp. 285–288. [Google Scholar] [CrossRef]
- AWR1843BOOST Product Page. Available online: https://www.ti.com/product/AWR1843BOOST/part-details/AWR1843BOOST (accessed on 10 November 2022).
- MicroChip Site, KSZ8851SNL-EVAL Product Page. Available online: https://www.microchip.com/en-us/development-tool/KSZ8851SNL-EVAL (accessed on 20 December 2022).
- ADMV7320 Product Page. Available online: https://www.analog.com/en/products/admv7320.html (accessed on 20 November 2022).
- ADMV7420 Product Page. Available online: https://www.analog.com/en/products/admv7420.html (accessed on 20 November 2022).
- AT-LNA-6090-1805T Product Page. Available online: https://www.atmicrowave.com/uploads/PDF/AT-LNA-6090-1805T.pd (accessed on 15 January 2023).
- ADF5610 Product Page. Available online: https://www.analog.com/en/products/adf5610.html (accessed on 15 November 2022).
- AMD Kintex7 FPGA KC705 Evaluation Kit Product Page. Available online: https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html (accessed on 28 December 2022).
- AD9680 Chip Product Page. Available online: https://www.analog.com/en/products/ad9680.html (accessed on 8 January 2023).
- FMCDAQ2 Evaluation Board Product Page. Available online: https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-ad-fmcdaq2-ebz.html (accessed on 9 January 2023).
- JESD204b High Speed Serial Interface. Available online: https://www.intel.it/content/www/it/it/products/details/fpga/intellectual-property/interface-protocols/jesd204b.html (accessed on 10 January 2023).
- Golay, M. Complementary series. IRE Trans. Inf. Theory 1961, 7, 82–87. [Google Scholar] [CrossRef]
- Parker, M.G.; Paterson, K.G.; Tellambura, C. Golay Complementary Sequences; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Harman, K.; Hodgins, B. The next generation of GUIDAR technology. In Proceedings of the 38th Annual 2004 International Carnahan Conference on Security Technology, Albuquerque, NM, USA, 12–14 October 2004; pp. 169–176. [Google Scholar]
- Oppenheim, A.W. Discrete-Time Signal Processing; Schafer Prentice-Hall Signal Processing Series; Alan, W., Oppenheim, R.W., Eds.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1989. [Google Scholar]
- Centre, J.R.; Protection, I.; Citizen, S.; Chareau, J.; Fortuny-Guasch, J. Radar cross Section Measurements of Pedestrian Dummies and Humans in the 24/77 GHz Frequency Bands: Establishment of a Reference Library of RCS Signatures of Pedestrian Dummies in the Automotive Radar Bands; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
Symbol | Description | Value |
---|---|---|
B | Bandwidth | 250 MHz |
Chirp Duration | 50 μs | |
S | Slope | 6.85 MHz/s |
number of range FFT samples | 1024 | |
N | Number of chirps per TX | 64 |
Sampling frequency | 7 MHz | |
Frame repetition rate | 100 ms | |
Range resolution | 0.6 m | |
Range accuracy | 0.15 m | |
Max unambiguous range | 150 m | |
Velocity resolution | 0.6 m/s | |
Max unambiguous velocity | 19.2 m/s |
Code Length | Code | Complement |
---|---|---|
… | … | … |
Symbol | Description | Value |
---|---|---|
B | Bandwidth | 250 MHz |
Chip Duration | 4 ns | |
N | Number of chip in a sequence | 256 |
Number of complementary pair | 64 | |
Sampling frequency | 1 GHz | |
Frame repetition rate | 100 ms | |
Range resolution | 0.6 m | |
Range accuracy | 0.15 m | |
Velocity resolution | 0.6 m/s | |
Max unambiguous velocity | 19.2 m/s |
Description | Value |
---|---|
Max peak attenuation | 3 dB |
Sidelobes suppression | 35 dB |
Peak widening factor | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caffa, M.; Biletta, F.; Maggiora, R. Binary-Phase vs. Frequency Modulated Radar Measured Performances for Automotive Applications. Sensors 2023, 23, 5271. https://doi.org/10.3390/s23115271
Caffa M, Biletta F, Maggiora R. Binary-Phase vs. Frequency Modulated Radar Measured Performances for Automotive Applications. Sensors. 2023; 23(11):5271. https://doi.org/10.3390/s23115271
Chicago/Turabian StyleCaffa, Mattia, Francesco Biletta, and Riccardo Maggiora. 2023. "Binary-Phase vs. Frequency Modulated Radar Measured Performances for Automotive Applications" Sensors 23, no. 11: 5271. https://doi.org/10.3390/s23115271
APA StyleCaffa, M., Biletta, F., & Maggiora, R. (2023). Binary-Phase vs. Frequency Modulated Radar Measured Performances for Automotive Applications. Sensors, 23(11), 5271. https://doi.org/10.3390/s23115271