Land Cover Classification of UAV Remote Sensing Based on Transformer–CNN Hybrid Architecture
Abstract
:1. Introduction
2. Study Areas and Dataset
2.1. Study Area
2.2. Construct Training Sets and Testing Sets
3. Methodology
3.1. Vision Transformer and Swin Transformer
3.2. Semantic Segmentation Network DE-UNet
3.3. Baseline Classification Models
3.3.1. AdaBoost
3.3.2. UNet
3.3.3. UNet++
4. Experimental Results and Discussion
4.1. Model Training
4.2. Classification Result and Evaluation
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, H.; Gu, X.; Sun, Y.; Gao, H.; Tao, Z.; Shi, S. Comparing, validating and improving the performance of reflectance obtention method for UAV-Remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102391. [Google Scholar] [CrossRef]
- Kelcey, J.; Lucieer, A. Sensor Correction of a 6-Band Multispectral Imaging Sensor for UAV Remote Sensing. Remote Sens. 2012, 4, 1462–1493. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zan, M.; Maimaiti, M. Estimation of above ground biomass of Populus euphratica forest using UAV and satellite remote sensing. Trans. Chin. Soc. Agric. Eng. 2021, 37, 7. [Google Scholar]
- Haala, N.; Kölle, M.; Cramer, M.; Laupheimer, D.; Mandlburger, G.; Glira, P. Hybrid Georeferencing, Enhancement and Classification of Ultra-High Resolution Uav LIDAR and Image Point Clouds for Monitoring Applications. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 5, 2. [Google Scholar] [CrossRef]
- Kuhn, J.; Casas-Mulet, R.; Pander, J.; Geist, J. Assessing Stream Thermal Heterogeneity and Cold-Water Patches from UAV-Based Imagery: A Matter of Classification Methods and Metrics. Remote Sens. 2021, 13, 1379. [Google Scholar] [CrossRef]
- Bian, R.; Nian, Y.; Gou, X.; He, Z.; Tan, X. Analysis of Forest Canopy Height based on UAV LiDAR: A Case Study of Picea crassifolia in the East and Central of the Qilian Mountains. Remote Sens. Technol. Appl. 2021, 36, 10. [Google Scholar]
- Calvin, H.; Zhe, X.; Salah, S. Feature Learning Based Approach for Weed Classification Using High Resolution Aerial Images from a Digital Camera Mounted on a UAV. Remote Sens. 2014, 6, 12037–12054. [Google Scholar]
- Liang, Z.; Wang, J.; Xiao, G.; Zeng, L. FAANet: Feature-aligned attention network for real-time multiple object tracking in UAV videos. Chin. Opt. Lett. 2022, 20, 081101. [Google Scholar] [CrossRef]
- Ye, L.; Vosselman, G.; Xia, G.S.; Yilmaz, A.; Yang, M.Y. UAVid: A semantic segmentation dataset for UAV imagery. ISPRS J. Photogramm. Remote Sens. 2020, 165, 108–119. [Google Scholar]
- Puliti, S.; Dash, J.P.; Watt, M.S.; Breidenbach, J.; Pearse, G.D. A comparison of UAV laser scanning, photogrammetry and airborne laser scanning for precision inventory of small-forest properties. Forestry 2019, 93, 150–162. [Google Scholar] [CrossRef]
- Al-Najjar, H.A.H.; Kalantar, B.; Pradhan, B.; Saeidi, V.; Halin, A.A.; Ueda, N.; Mansor, S. Land cover classification from fused DSM and UAV images using convolutional neural networks. Remote Sens. 2019, 11, 1461. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Huang, Y.; Li, Y.; Yu, F.; Tu, T.; Wang, W.; Zang, Y.; Li, J.; Luo, Y. Diversity of Plant Community in Flood Land of Henan Section of the Lower Yellow River based on Unmanned Aerial Vehicle Remote Sensing. Wetl. Sci. 2021, 19, 17–26. [Google Scholar]
- Aeberli, A.; Johansen, K.; Robson, A.; Lamb, D.W.; Phinn, S. Detection of Banana Plants Using Multi-Temporal Multispectral UAV Imagery. Remote Sens. 2021, 13, 2123. [Google Scholar] [CrossRef]
- de Camargo, T.; Schirrmann, M.; Landwehr, N.; Dammer, K.-H.; Pflanz, M. Optimized Deep Learning Model as a Basis for Fast UAV Mapping of Weed Species in Winter Wheat Crops. Remote Sens. 2021, 13, 1704. [Google Scholar] [CrossRef]
- Hashemi-Beni, L.; Gebrehiwot, A. Flood Extent Mapping: An Integrated Method using Deep Learning and Region Growing Using UAV Optical Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 1, 99. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar] [CrossRef]
- Huang, Z.; Zeng, Z.; Huang, Y.; Liu, B.; Fu, D.; Fu, J. Seeing Out of the Box: End-to-End Pre-Training for Vision-Language Representation Learning; IEEE: Toulouse, France, 2021; pp. 12971–12980. [Google Scholar]
- Chen, H.; Zhang, T.; Chen, R. Image classification method based on lightweight convolutional Transformer and its application in remote sensing image classification. J. Electron. Inf. Technol. 2022, 44, 1–9. [Google Scholar]
- Bello, I.; Zoph, B.; Vaswani, A.; Shlens, J.; Le, Q.V. Attention Augmented Convolutional Networks. arXiv 2019, arXiv:1904.09925. [Google Scholar] [CrossRef]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 213–229. [Google Scholar]
- Han, K.; Xiao, A.; Wu, E.; Guo, J.; Xu, C.; Wang, Y. Transformer in Transformer. arXiv 2021, arXiv:2103.00112. Available online: https://arxiv.org/abs/2103.00112 (accessed on 5 April 2023).
- Kyeong-Beom, P.; Yeol, L.J. SwinE-Net: Hybrid deep learning approach to novel polyp segmentation using convolutional neural network and Swin Transformer. J. Comput. Des. Eng. 2022, 2, 616–632. [Google Scholar]
- Xu, X.; Feng, Z.; Cao, C.; Li, M.; Wu, J.; Wu, Z.; Shang, Y.; Ye, S. An Improved Swin Transformer-Based Model for Remote Sensing Object Detection and Instance Segmentation. Remote Sens. 2021, 13, 4779. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, L.; Cheng, S.; Li, Y. SwinSUNet: Pure Transformer Network for Remote Sensing Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5224713. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Pham, B.T.; Tien Bui, D.; Prakash, I.; Dholakia, M.B. Hybrid Integration of Multilayer Perceptron Neural Networks and Machine Learning Ensembles for Landslide Susceptibility Assessment at Himalayan Area (India) Using GIS. CATENA 2017, 149, 52–63. [Google Scholar] [CrossRef]
- Valdez, M.C.; Chang, K.-T.; Chen, C.-F.; Chiang, S.-H.; Santos, J.L. Modelling the Spatial Variability of Wildfire Susceptibility in Honduras Using Remote Sensing and Geographical Information Systems. Geomat. Nat. Hazards Risk 2017, 8, 876–892. [Google Scholar] [CrossRef] [Green Version]
- Dou, P.; Chen, Y.; Yue, H. Remote-sensing imagery classification using multiple classification algorithm-based AdaBoost. Int. J. Remote Sens. 2018, 39, 619–639. [Google Scholar] [CrossRef]
- Bigdeli, B.; Pahlavani, P.; Amirkolaee, H.A. An ensemble deep learning method as data fusion system for remote sensing multisensor classification. Appl. Soft Comput. 2021, 110, 107563. [Google Scholar] [CrossRef]
- Zhu, S.; Deng, J.; Zhang, Y.; Yang, C.; Yan, Z.; Xie, Y. Study on distribution map of weeds in rice field based on UAV remote sensing. J. South China Agric. Univ. 2020, 41, 8. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Sarvamangala, D.; Kulkarni, R.V. Convolutional neural networks in medical image understanding: A survey. Evol. Intell. 2021, 15, 1–22. [Google Scholar] [CrossRef]
- Cicek, O.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. In Medical Image Computing and Computer Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9901, pp. 424–432. [Google Scholar]
- Wagner, F.H.; Sanchez, A.; Tarabalka, Y.; Lotte, R.G.; Ferreira, M.P.; Aidar, M.P.; Gloor, E.; Phillips, O.L.; Aragao, L.E. Using the U-net convolutional network to map forest types and disturbance in the Atlantic rainforest with very high resolution images. Remote Sens. Ecol. Conserv. 2019, 5, 360–375. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Zhou, Y.; Qiu, B.; Guo, D.; Li, M. CloudU-Net: A Deep Convolutional Neural Network Architecture for Daytime and Nighttime Cloud Images’ Segmentation. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1688–1692. [Google Scholar] [CrossRef]
- Li, R.; Duan, C.; Zheng, S.; Zhang, C.; Atkinson, P.M. MACU-Net for Semantic Segmentation of Fine-Resolution Remotely Sensed Images. IEEE Geosci. Remote Sens. Lett. 2021, 99, 1–5. [Google Scholar] [CrossRef]
- Zhou, Z.; Siddiquee, M.R.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation. In Deep Learn Med Image Anal Multimodal Learn Clin Decis Support, Proceedings of the 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 20 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11045, pp. 3–11. [Google Scholar] [CrossRef] [Green Version]
- Alexakis, E.B.; Armenakis, C. Evaluation of UNet and UNet++ Architectures in High Resolution Image Change Detection Applications. ISPRS—International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2020, 43b3, 1507–1514. [Google Scholar] [CrossRef]
- Bao, Y.; Liu, W.; Gao, O.; Lin, Z.; Hu, Q. E-Unet++: A Semantic Segmentation Method for Remote Sensing Images. In Proceedings of the 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 18–20 June 2021; pp. 1858–1862. [Google Scholar] [CrossRef]
- Raza, A.; Huo, H.; Fang, T. EUNet-CD: Efficient UNet++ for Change Detection of Very High-Resolution Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3510805. [Google Scholar] [CrossRef]
No. | Class | Color | Sample Size |
---|---|---|---|
1 | Corn | 46,083,620 | |
2 | Rice | 41,024,595 | |
3 | Water | 6,814,415 |
No. | Class | Color | Sample Size |
---|---|---|---|
1 | Corn | 5,874,169 | |
2 | Rice | 64,240,779 | |
3 | Water | 5,591,738 |
Class | AdaBoost Mean ± SD | UNet Mean ± SD | UNet++ Mean ± SD | DE-UNet Mean ± SD |
---|---|---|---|---|
Corn | 48.69 ± 0.07% | 94.32 ± 1.82% | 96.02 ± 3.53% | 96.07 ± 2.08% |
Rice | 85.83 ± 0.11% | 96.92 ± 0.60% | 98.36 ± 0.67% | 98.46 ± 0.54% |
Water | 76.18 ± 0.24% | 76.89 ± 3.10% | 93.23 ± 6.56% | 74.08 ± 1.17% |
OA (%) | 71.12 ± 0.05 | 94.23 ± 0.48 | 89.70 ± 1.80 | 94.51 ± 0.94 |
AA (%) | 79.53 ± 0.03 | 90.20 ± 0.86 | 90.53 ± 1.86 | 88.74 ± 3.03 |
Kappa × 100 | 67.60 ± 0.02 | 89.08 ± 0.92 | 81.13 ± 3.60 | 89.74 ± 1.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, T.; Wan, L.; Qi, S.; Gao, M. Land Cover Classification of UAV Remote Sensing Based on Transformer–CNN Hybrid Architecture. Sensors 2023, 23, 5288. https://doi.org/10.3390/s23115288
Lu T, Wan L, Qi S, Gao M. Land Cover Classification of UAV Remote Sensing Based on Transformer–CNN Hybrid Architecture. Sensors. 2023; 23(11):5288. https://doi.org/10.3390/s23115288
Chicago/Turabian StyleLu, Tingyu, Luhe Wan, Shaoqun Qi, and Meixiang Gao. 2023. "Land Cover Classification of UAV Remote Sensing Based on Transformer–CNN Hybrid Architecture" Sensors 23, no. 11: 5288. https://doi.org/10.3390/s23115288
APA StyleLu, T., Wan, L., Qi, S., & Gao, M. (2023). Land Cover Classification of UAV Remote Sensing Based on Transformer–CNN Hybrid Architecture. Sensors, 23(11), 5288. https://doi.org/10.3390/s23115288