A Multi-Global Navigation Satellite System (GNSS) Time Transfer Method with Federated Kalman Filter (FKF)
Abstract
:1. Introduction
2. Materials and Methods
2.1. GNSS Time Transfer
2.2. Weighted Data Fusion with Different Weights
2.3. Multi-GNSS Time Transfer
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allan, D.W.; Weiss, M.A. Accurate time and frequency transfer during common-view of a GPS satellite. In Proceedings of the 34th Annual Symposium on Frequency Control, Philadelphia, PA, USA, 28–30 May 1980; pp. 334–356. [Google Scholar]
- Defraigne, P.; Petit, G. CGGTTS-Version 2E: An extended standard for GNSS Time Transfer. Metrologia 2015, 52, G1. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Yang, X.; Chang, H.; Qin, W.; Cao, F.; Li, Z.; Sun, B. Method of Precise Common-View frequency transfer based on BeiDou GEO satellite. In Proceedings of the 2014 IEEE International Frequency Control Symposium, Taipei, Taiwan, 19–22 May 2014; pp. 1–4. [Google Scholar]
- Huang, W.; Defraigne, P. BeiDou Time Transfer with the Standard CGGTTS. IEEE Trans. Ultrason. Ferroe-Lectrics Freq. Control. 2016, 63, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.; Zhang, A.; Yang, Z.; Tisserand, L.; Jiang, Z.; Petit, G.; Arias, F.; Wang, Y. Experimental research on BeiDou time transfer using the NIM made GNSS time and frequency receivers at the BIPM in Euro-Asia link. In Proceedings of the 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium, Besancon, France, 9–13 July 2017; pp. 788–797. [Google Scholar]
- Liang, K.; Arias, F.; Petit, G.; Jiang, Z.; Tisserand, L.; Wang, Y.; Yang, Z.; Zhang, A. Evaluation of BDS Time Transfer on Multiple Baselines for UTC. In Proceedings of the 49th Annual Precise Time and Time Interval Systems and Applications Meeting, Reston, VA, USA, 29 January–1 February 2018; pp. 164–172. [Google Scholar]
- Liang, K.; Chen, Q.; Han, K.; Yang, Z.; Zhang, A.; Ding, C. Time Transfer via BDS and Galileo Compared to Time Transfer via GPS. In Proceedings of the 50th Annual Precise Time and Time Interval Systems and Applications Meeting, Reston, VA, USA, 28–31 January 2019; pp. 131–136. [Google Scholar]
- Zhang, P.; Tu, R.; Wu, W.; Liu, J.; Wang, X.; Zhang, R. Initial accuracy and reliability of current BDS-3 precise positioning, velocity estimation, and time transfer (PVT). Adv. Space Res. 2019, 65, 1225–1234. [Google Scholar] [CrossRef]
- Farinaz, M.; Jamal, A.; Sandra, V.; Alireza, A. Multi-GNSS-Weighted Interpolated Tropospheric Delay to Improve Long-Baseline RTK Positioning. Sensors 2022, 22, 5570. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Cai, H.; Chen, G.; Jiao, W.; He, Q.; Yang, Y. Multi-GNSS Combined Orbit and Clock Solutions at iGMAS. Sensors 2022, 22, 457. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Zhang, J.; Guo, M.; Ning, X.; Wang, Y.; Lu, J. Sensor Fusion of GNSS and IMU Data for Robust Localization via Smoothed Error State Kalman Filter. Sensors 2023, 23, 3676. [Google Scholar] [CrossRef]
- Jiang, Z.; Lewandowski, W. Use of GLONASS for UTC time transfer. Metrologia 2012, 49, 57–61. [Google Scholar] [CrossRef]
- Harmegnies, A.; Defraigne, P.; Petit, G. Combining GPS and GLONASS in all-in-view for time transfer. Metrologia 2013, 50, 277–287. [Google Scholar] [CrossRef]
- Liang, K.; Zhang, A.; Pei, C.; Zuo, F.; Jin, Z. Preliminary implementation of time and frequency transfer by BDS. In Proceedings of the 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium, Prague, Czech Republic, 21–25 July 2013; pp. 517–520. [Google Scholar]
- Lin, S.; Jiang, Z. GPS all in view time comparison using multi-receiver ensemble. In Proceedings of the Joint Conference of the European Frequency & Time Forum & IEEE International Frequency Control Symposium, Besancon, France, 9–13 July 2017; pp. 362–365. [Google Scholar]
- Lin, S.; Jiang, Z. The Long Term Stability and Redundancy Test of GPS Multi-Receiver Ensemble. In Proceedings of the 49th Annual Precise Time and Time Interval Systems and Applications Meeting, Reston, VA, USA, 29 January–1 February 2018; pp. 154–163. [Google Scholar]
- Carlson, N.A.; Berarducci, M.P. Federated Kalman Filter Simulation Results. Navigation 1994, 41, 297–322. [Google Scholar] [CrossRef]
- Fan, D.S.; Shi, S.H.; Li, X.H. An algorithm for the rubidium atomic clock control based on the Kalman filter. J. Astronaut. 2015, 36, 90–95. [Google Scholar]
Weight Allocation | GPS | BDS | std |
---|---|---|---|
w1 | w2 | ||
two GNSS systems | 0.0000 | 1.0000 | 0.3885 |
0.1000 | 0.9000 | 0.3542 | |
0.2000 | 0.8000 | 0.3287 | |
0.3000 | 0.7000 | 0.3143 | |
0.4000 | 0.6000 | 0.3126 | |
0.5000 | 0.5000 | 0.3237 | |
0.6000 | 0.4000 | 0.3464 | |
0.7000 | 0.3000 | 0.3786 | |
0.8000 | 0.2000 | 0.4181 |
Weight Allocation | GPS | BDS | GLONASS | |
---|---|---|---|---|
w1 | w2 | w3 | std | |
three GNSS systems | 0.0000 | 0.0000 | 1.0000 | 1.1314 |
0.0000 | 0.2000 | 0.8000 | 0.9085 | |
0.0000 | 0.4000 | 0.6000 | 0.6965 | |
0.0000 | 0.6000 | 0.4000 | 0.5093 | |
0.0000 | 0.8000 | 0.2000 | 0.3850 | |
0.0000 | 1.0000 | 0.0000 | 0.3892 | |
0.2000 | 0.0000 | 0.8000 | 0.9155 | |
0.2000 | 0.2000 | 0.6000 | 0.6957 | |
0.2000 | 0.4000 | 0.4000 | 0.4942 | |
0.2000 | 0.6000 | 0.2000 | 0.3452 | |
0.2000 | 0.8000 | 0.0000 | 0.3294 | |
0.4000 | 0.0000 | 0.6000 | 0.7179 | |
0.4000 | 0.2000 | 0.4000 | 0.5116 | |
0.4000 | 0.4000 | 0.2000 | 0.3501 | |
0.4000 | 0.6000 | 0.0000 | 0.3131 | |
0.6000 | 0.000 | 0.4000 | 0.5583 | |
0.6000 | 0.2000 | 0.2000 | 0.3983 | |
0.6000 | 0.4000 | 0.0000 | 0.3465 | |
0.8000 | 0.0000 | 0.2000 | 0.4766 | |
0.8000 | 0.2000 | 0.0000 | 0.4179 | |
1.0000 | 0.0000 | 0.0000 | 0.5117 | |
weight using std | 0.3412 | 0.5896 | 0.0692 | 0.3031 |
weight using TDEV | 0.3190 | 0.5401 | 0.1409 | 0.3158 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, K.; Hao, S.; Yang, Z.; Wang, J. A Multi-Global Navigation Satellite System (GNSS) Time Transfer Method with Federated Kalman Filter (FKF). Sensors 2023, 23, 5328. https://doi.org/10.3390/s23115328
Liang K, Hao S, Yang Z, Wang J. A Multi-Global Navigation Satellite System (GNSS) Time Transfer Method with Federated Kalman Filter (FKF). Sensors. 2023; 23(11):5328. https://doi.org/10.3390/s23115328
Chicago/Turabian StyleLiang, Kun, Shuangyu Hao, Zhiqiang Yang, and Jian Wang. 2023. "A Multi-Global Navigation Satellite System (GNSS) Time Transfer Method with Federated Kalman Filter (FKF)" Sensors 23, no. 11: 5328. https://doi.org/10.3390/s23115328
APA StyleLiang, K., Hao, S., Yang, Z., & Wang, J. (2023). A Multi-Global Navigation Satellite System (GNSS) Time Transfer Method with Federated Kalman Filter (FKF). Sensors, 23(11), 5328. https://doi.org/10.3390/s23115328