Glassy Carbon Electrode Modified with CB/TiO2 Layer for Sensitive Determination of Sumatriptan by Means of Voltammetry and Flow Injection Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus
2.2. Chemicals and Glassware
2.3. Sample Preparation
2.3.1. Tablet
2.3.2. Urine
2.3.3. Plasma
2.4. Modifier Suspension Preparation
2.5. Working Electrode Preparation
2.6. Measurement Procedure
3. Results and Discussion
3.1. CB/TiO2 Modified GC Electrode Electrochemical Characterization
3.2. Voltammetric Behaviour of Sumatriptan on CB-TiO2/GC Electrode
3.3. Influence of the Preconcentration Time and Potential on Sumatriptan Peak
3.4. Influence of the Supporting Electrolyte Composition on the Sumatriptan Peak
3.5. Interferences
3.6. Analytical Performance
3.7. Flow Injection Analysis with Amperometric and Voltammetric Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lipton, R.B.; Diamond, S.; Reed, M.; Diamond, M.L.; Stewart, W.F. Migraine diagnosis and treatment: Results from the American Migraine Study II. Headache J. Head Face Pain 2001, 41, 638–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietrobon, D.; Moskowitz, M.A. Pathophysiology of migraine. Annu. Rev. Physiol. 2013, 75, 365–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, B.K.; Olesen, J. Migraine with aura and migraine without aura: An epidemiological study. Cephalalgia 1992, 12, 221–228. [Google Scholar] [CrossRef]
- Schwedt, T.J. Chronic migraine. BMJ 2014, 348, g1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baloh, R.W. Neurotology of migraine. Headache J. Head Face Pain 1997, 37, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Goadsby, P.J.; Lipton, R.B.; Ferrari, M.D. Migraine—Current understanding and treatment. N. Engl. J. Med. 2002, 346, 257–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plosker, G.L.; McTavish, D. Sumatriptan: A reappraisal of its pharmacology and therapeutic efficacy in the acute treatment of migraine and cluster headache. Drugs 1994, 47, 622–651. [Google Scholar] [CrossRef]
- Moskowitz, M.A.; Cutrer, F.M. Sumatriptan: A receptor-targeted treatment for migraine. Annu. Rev. Med. 1993, 44, 145–154. [Google Scholar] [CrossRef]
- Perry, C.M.; Markham, A. Sumatriptan: An updated review of its use in migraine. Drugs 1998, 55, 889–922. [Google Scholar] [CrossRef]
- Cady, R.K.; Sheftell, F.; Lipton, R.B.; O’Quinn, S.; Jones, M.; Putnam, D.G.; Crisp, A.; Metz, A.; McNeal, S. Effect of early intervention with sumatriptan on migraine pain: Retrospective analyses of data from three clinical trials. Clin. Ther. 2000, 22, 1035–1048. [Google Scholar] [CrossRef] [PubMed]
- Derry, C.J.; Derry, S.; Moore, R.A. Sumatriptan (oral route of administration) for acute migraine attacks in adults. Cochrane Database Syst. Rev. 2012, 2019, CD008615. [Google Scholar] [CrossRef]
- Goadsby, P.J.; Zagami, A.S.; Anthony, M.; Lance, J.W.; Donnan, G.A.; Bladin, P.F.; Symington, G. Oral sumatriptan in acute migraine. Lancet 1991, 338, 782–783. [Google Scholar] [CrossRef]
- Lipton, R.B.; Stewart, W.F.; Cady, R.; Hall, C.; O’Quinn, S.; Kuhn, T.; Gutterman, D. Sumatriptan for the range of headaches in migraine sufferers: Results of the Spectrum Study. Headache J. Head Face Pain 2000, 40, 783–791. [Google Scholar] [CrossRef]
- McCrory, D.C.; Gray, R.N. Oral sumatriptan for acute migraine. Cochrane Database Syst. Rev. 2003, 3, CD002915. [Google Scholar]
- Cady, R.K.; Wendt, J.K.; Kirchner, J.R.; Sargent, J.D.; Rothrock, J.F.; Skaggs, H. Treatment of Acute Migraine with Subcutaneous Sumatriptan. JAMA 1991, 265, 2831–2835. [Google Scholar] [CrossRef]
- Fuseau, E.; Petricoul, O.; Moore, K.H.; Barrow, A.; Ibbotson, T. Clinical Pharmacokinetics of Intranasal Sumatriptan. Clin. Pharmacokinet. 2002, 41, 801–811. [Google Scholar] [CrossRef]
- Pierce, M.W. Transdermal Delivery of Sumatriptan for the Treatment of Acute Migraine. Neurotherapeutics 2010, 7, 159–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodick, D.W.; Lipton, R.B.; Goadsby, P.J.; Tfelt-Hansen, P.; Ferrari, M.D.; Diener, H.-C.; Almas, M.; Albert, K.S.; Parsons, B. Predictors of migraine headache recurrence: A pooled analysis from the eletriptan database. Headache 2008, 48, 184–193. [Google Scholar] [CrossRef]
- Ge, Z.; Tessier, E.; Neirinck, L.; Zhu, Z. High performance liquid chromatographic method for the determination of sumatriptan with fluorescence detection in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 806, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Prashanth, K.N.; Basavaiah, K.; Xavier, C.M. Development and validation of UV-spectrophotometric methods for the determination of sumatriptan succinate in bulk and pharmaceutical dosage form and its degradation behavior under varied stress conditions. J. Assoc. Arab. Univ. Basic Appl. Sci. 2014, 15, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Abo Zaid, M.H.; Abo El abass, S.; El-Enany, N.; Aly, F. Spectrofluorimetric investigation for determination of sumatriptan succinate: Application to tablets and spiked human plasma. Luminescence 2021, 36, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Hammad, M.; Omar, M.; Eltoukhi, W. Validation of Rapid and Sensitive Spectrofluorimetric Assay for Determination of Four Triptans in Pure and Dosage Forms; Application to Human Plasma and Content Uniformity Testing. Pharm. Anal. Acta 2016, 7, 1000497. [Google Scholar]
- Vishwanathan, K.; Bartlett, M.G.; Stewart, J.T. Determination of antimigraine compounds rizatriptan, zolmitriptan, naratriptan and sumatriptan in human serum by liquid chromatography/electrospray tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 168–172. [Google Scholar] [CrossRef]
- Xu, X.; Bartlett, M.G.; Stewart, J.T. Determination of degradation products of sumatriptan succinate using LC-MS and LC-MS-MS. J. Pharm. Biomed. Anal. 2001, 26, 367–377. [Google Scholar] [CrossRef]
- Gholivand, M.B.; Mohammadi-Behzad, L. Fabrication of a highly sensitive sumatriptan sensor based on ultrasonic-electrodeposition of Pt nanoparticles on the ZrO2 nanoparticles modified carbon paste electrode. J. Electroanal. Chem. 2014, 712, 33–39. [Google Scholar] [CrossRef]
- Jalali-Sarvestani, M.; Madrakian, T.; Afkhami, A. Voltammetric Determination of Sumatriptan by an Overoxidized Poly (p-aminophenol) Modified Glassy Carbon Electrode. Anal. Bioanal. Chem. Res. 2021, 8, 245–259. [Google Scholar]
- Sanghavi, B.J.; Kalambate, P.K.; Karna, S.P.; Srivastava, A.K. Voltammetric determination of sumatriptan based on a graphene/gold nanoparticles/Nafion composite modified glassy carbon electrode. Talanta 2014, 120, 1–9. [Google Scholar] [CrossRef]
- Aldawsari, A.M.; Khalifa, M.E.; Munshi, A.M.; Shah, R.; Keshk, A.A.; Saad, F.; El-Metwaly, N.M. Copper Oxide Based Disposable Sensors for Sensitive Voltammetric Assay of Sumatriptan. Int. J. Electrochem. Sci. 2021, 16, 210540. [Google Scholar] [CrossRef]
- Ghanavati, M.; Tadayon, F.; Basiryanmahabadi, A.; Torabi Fard, N.; Smiley, E. Design of new sensing layer based on ZnO/NiO/Fe3O4/MWCNTs nanocomposite for simultaneous electrochemical determination of Naproxen and Sumatriptan. J. Pharm. Biomed. Anal. 2023, 223, 115091. [Google Scholar] [CrossRef]
- Kalambate, P.K.; Dhanjai; Sinha, A.; Li, Y.; Shen, Y.; Huang, Y. An electrochemical sensor for ifosfamide, acetaminophen, domperidone, and sumatriptan based on self-assembled MXene/MWCNT/chitosan nanocomposite thin film. Microchim. Acta 2020, 187, 402. [Google Scholar] [CrossRef]
- Karim-Nezhad, G.; Khanaliloo, S.; Khorablou, Z.; Dorraji, S.P. Signal amplification for sumatriptan sensing based on polymeric surface decorated with Cu nanoparticles. J. Serbian Chem. Soc. 2018, 83, 449–462. [Google Scholar] [CrossRef] [Green Version]
- Beitollahi, H.; Dourandish, Z.; Tajik, S.; Sharifi, F.; Jahani, P.M. Electrochemical Sensor Based on Ni-Co Layered Double Hydroxide Hollow Nanostructures for Ultrasensitive Detection of Sumatriptan and Naproxen. Biosensors 2022, 12, 872. [Google Scholar] [CrossRef] [PubMed]
- Hassan Oghli, A.; Soleymanpour, A. Ultrasensitive electrochemical sensor for simultaneous determination of sumatriptan and paroxetine using molecular imprinted polymer/sol-gel/polyoxometalate/rGO modified pencil graphite electrode. Sensors Actuators B Chem. 2021, 344, 130215. [Google Scholar] [CrossRef]
- Tajik, S.; Shahsavari, M.; Sheikhshoaie, I.; Nejad, F.G.; Beitollahi, H. Voltammetric detection of sumatriptan in the presence of naproxen using Fe3O4@ZIF-8 nanoparticles modified screen printed graphite electrode. Sci. Rep. 2021, 11, 24068. [Google Scholar] [CrossRef]
- Smajdor, J.; Piech, R.; Pięk, M.; Paczosa-Bator, B. Carbon black as a glassy carbon electrode modifier for high sensitive melatonin determination. J. Electroanal. Chem. 2017, 799, 278–284. [Google Scholar] [CrossRef]
- Smajdor, J.; Piech, R.; Ławrywianiec, M.; Paczosa-Bator, B. Glassy carbon electrode modified with carbon black for sensitive estradiol determination by means of voltammetry and flow injection analy-sis with amperometric detection. Anal. Biochem. 2018, 544, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Smajdor, J.; Piech, R.; Pięk, M.; Paczosa-Bator, B. Sensitive voltammetric determination of ethinyl estradiol on carbon black modified electrode. J. Electrochem. Soc. 2017, 164, H885–H889. [Google Scholar] [CrossRef]
Epa, mV | Epc, mV | ∆Ep | Ipa, µA | Ipc, µA | Ipa/Ipc | A, cm3 | |
---|---|---|---|---|---|---|---|
CB | 204 | 131 | 73 | 19.76 | 21.46 | 0.92 | 0.084 |
TiO2 | 271 | 45 | 226 | 5.14 | 8.48 | 0.61 | 0.022 |
CB/TiO2 | 224 | 129 | 95 | 21.58 | 23.85 | 0.90 | 0.092 |
GC | TiO2/GC | CB/GC | CB-TiO2/GC | |
---|---|---|---|---|
C, µF | 0.692 | 0.057 | 0.307 | 42.3 |
Rct, kΩ | 1.60 | 31.9 | 2.50 | 1.42 |
Electrode | Technique | Sensitivity | Linear Range, µM | LOD, mol L−1 | Reference |
---|---|---|---|---|---|
Pt-ZONPs/CPE | CV | - | 0.010–55 | 3·10−9 | [25] |
PAP/GCE | SWV | - | 1.0–100.0 | 0.294·10−6 | [26] |
Gr/AuNP/NAF/GCE | AdSDPV | 0.48 µA/µM | 0.002–41.20 | 7.03·10−10 | [27] |
CuO/SPE | DPV | - | 0.33–3.54 | 0.066·10−6 | [28] |
ZnO/NiO/Fe3O4/MWCNTs/GCE | SWV | - | 0.006–380.00 | 2·10−9 | [29] |
MXene/MWCNT/chitosan/GCE | AdSDPV | - | 0.0033–61 | 0.00042·10−6 | [30] |
CuNPs/poly-melamine/GCE | DPV | 1.14 µA/µM | 0.08–0.58 | 0.025·10−6 | [31] |
Ni–Co LDH/SPE | DPV | 0.1017 µA/µM | 0.01–435.0 | 0.002·10−6 | [32] |
MIP/Sol-Gel/PWA/rGO/PGE | AdDPV | 10.97 µA/µM | 0.02–3 | 4·10−9 | [33] |
Fe3O4@ZIF-8/SPGE | DPV | 0.1013 µA/µM | 0.035–475.0 | 0.03·10−6 | [34] |
CB-TiO2/GC | SWV | 0.03 µA/nM | 0.005–150 | 2.9·10−9 | This work |
Sample | Added, μmol L−1 | Found ±, μmol L−1 | Recovery, % |
---|---|---|---|
Tablet | 0 | 0.09 ± 0.01 | - |
0.1 | 0.20 ± 0.03 | 103 | |
0.2 | 0.29 ± 0.03 | 102 | |
0.3 | 0.39 ± 0.04 | 98 | |
Urine (20 × diluted) | 0 | ND | - |
1.0 | 0.95 ± 0.05 | 95 | |
2.0 | 2.09 ± 0.05 | 105 | |
3.0 | 2.99 ± 0.02 | 99 | |
4.0 | 3.96 ± 0.04 | 99 | |
Plasma (30 × diluted) | 0 | ND | - |
0.5 | 0.47 ± 0.06 | 94 | |
1.0 | 1.05 ± 0.01 | 105 | |
1.5 | 1.56 ± 0.03 | 104 | |
2.0 | 1.94 ± 0.02 | 97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smajdor, J.; Paczosa-Bator, B.; Grabarczyk, M.; Piech, R. Glassy Carbon Electrode Modified with CB/TiO2 Layer for Sensitive Determination of Sumatriptan by Means of Voltammetry and Flow Injection Analysis. Sensors 2023, 23, 5397. https://doi.org/10.3390/s23125397
Smajdor J, Paczosa-Bator B, Grabarczyk M, Piech R. Glassy Carbon Electrode Modified with CB/TiO2 Layer for Sensitive Determination of Sumatriptan by Means of Voltammetry and Flow Injection Analysis. Sensors. 2023; 23(12):5397. https://doi.org/10.3390/s23125397
Chicago/Turabian StyleSmajdor, Joanna, Beata Paczosa-Bator, Małgorzata Grabarczyk, and Robert Piech. 2023. "Glassy Carbon Electrode Modified with CB/TiO2 Layer for Sensitive Determination of Sumatriptan by Means of Voltammetry and Flow Injection Analysis" Sensors 23, no. 12: 5397. https://doi.org/10.3390/s23125397
APA StyleSmajdor, J., Paczosa-Bator, B., Grabarczyk, M., & Piech, R. (2023). Glassy Carbon Electrode Modified with CB/TiO2 Layer for Sensitive Determination of Sumatriptan by Means of Voltammetry and Flow Injection Analysis. Sensors, 23(12), 5397. https://doi.org/10.3390/s23125397