Verification of Commercial Near-Infrared Spectroscopy Measurement and Fresh Weight Diversity Modeling in Brix% for Small Tomato Fruits with Various Cultivars and Growth Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant and Fruit Materials
2.2. Growing Conditions
2.3. Measurements
2.3.1. Basic Characteristics
2.3.2. NIR Spectroscopy and Soluble Solids Content (SSC) Measurements as Brix%
2.3.3. Currant Tomato Fruit Measurements
3. Results
3.1. Basic Fruit Characteristics
3.2. Relationships between NIR Value, Brix%, and Fresh Weight of Tomato Fruits
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rudich, J.; Kalmar, D.; Geizenberg, C.; Harel, S. Low water tension in defined growth stages of processing tomato plants and their effects on yield and quality. J. Hort. Sci. 1977, 52, 391–400. [Google Scholar] [CrossRef]
- Stevens, M.; Rudich, J. Genetic potential for overcoming physiological limitation on adaptability, yield and quality in the tomato. HortScience 1978, 13, 673–678. [Google Scholar] [CrossRef]
- Roohanitaziani, R.; de Maagd, R.A.; Lammers, M.; Molthoff, J.; Meijer-Dekens, F.; van Kaauwen, M.P.W.; Finkers, R.; Tikunov, Y.; Visser, R.G.F.; Bovy, A.G. Exploration of a resequenced tomato core collection for phenotypic and genotypic variation in plant growth and fruit quality traits. Genes 2020, 11, 1278. [Google Scholar] [CrossRef] [PubMed]
- Picha, D.H. Effect of harvest maturity on the final fruit composition of cherry and large-fruited tomato cultivars. J. Am. Soc. Hortic. Sci. 1986, 111, 723–727. [Google Scholar] [CrossRef]
- Slaughter, D.C.; Barrett, D.; Boersig, M. Nondestructive determination of soluble solids in tomatoes using near infrared spectroscopy. J. Food Sci. 1996, 61, 695–697. [Google Scholar] [CrossRef] [Green Version]
- Borba, K.R.; Aykas, D.P.; Milani, M.I.; Colnago, L.A.; Ferreira, M.D.; Rodriguez-Saona, L.E. Portable near Infrared Spectroscopy as a tool for fresh tomato quality control analysis in the field. Appl. Sci. 2021, 11, 3209. [Google Scholar] [CrossRef]
- Walsh, K.B.; McGlone, V.A.; Han, D.H. The uses of near infra-red spectroscopy in postharvest decision support: A review. Postharvest Biol. Technol. 2020, 163, 111139. [Google Scholar] [CrossRef]
- Kubota Corp. Fruit and Vegetable Quality Evaluation Equipment, Fruit Selector; Instruction Manual; Kubota Corp.: Osaka, Japan, 2019; p. 40. [Google Scholar]
- Helyes, L.; Pék, Z.; Lugasi, A. Function of the variety technological traits and growing conditions on fruit components of tomato (Lycopersicon lycopersicum L. Karsten). Acta Aliment. 2008, 37, 427–436. [Google Scholar] [CrossRef]
- Kavitha, P.; Shivashankara, K.S.; Rao, V.K.; Sadashiva, A.T.; Ravishankar, K.V.; Sathish, G.J. Genotypic variability for antioxidant and quality parameters among tomato cultivars, hybrids, cherry tomatoes and wild species. J. Sci. Food Agric. 2014, 94, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, I. Compositional characteristics of currant tomato fruits. Fac. J. Komazawa Women‘s Univ. 2019, 26, 1–6. [Google Scholar]
- Omasa, K.; Ono, E.; Ishigami, Y.; Shimizu, Y.; Araki, Y. Plant functional remote sensing and smart farming applications. Int. J. Agric. Biol. Eng. 2022, 15, 1–6. [Google Scholar] [CrossRef]
- Morimoto, S. Smartization of agriculture using Near Infrared Spectroscopy -Non-destructive measurement technology on-site. Kansai Branch Bull. Jpn. Soc. Agric. Mach. Food Eng. 2020, 127, 93. [Google Scholar]
- Motoki, S.; Someya, M.; Higuchi, Y.; Morimoto, S.; Fujio, T.; Ikeura, H. Non-destructive quality measurement using visible Near-Infrared spectroscopy for determining soluble solid and lycopene content in cherry tomatoes. Food Preserv. Sci. 2018, 44, 145–153. [Google Scholar] [CrossRef]
- Jaywant, S.A.; Singh, H.; Arif, K.M. Sensors and instruments for Brix measurement: A Review. Sensors 2022, 22, 2290. [Google Scholar] [CrossRef] [PubMed]
- Takii & Co., Ltd. Available online: https://www.takii.co.jp/CGI/tsk/shohin/shohin.cgi?breed_seq=00000852&hinmoku_cd=ATM&area_cd=5&daigi_flg=0 (accessed on 15 March 2023).
FW (g) | PD (mm) | ED (mm) | SI | Brix% | Number of Total Samples | ||
---|---|---|---|---|---|---|---|
HG(1) Cherry tomato ‘TY Chika’ | Mean | 10.11 | 24.8 | 25.8 | 0.96 | 9.5 | 110 |
Min–Max | 5.76–19.4 | 20.6–30.1 | 19.6–32.6 | 0.84–1.26 | 6.2–14.2 | ||
HG(2) Currant tomato ‘Microbeads’ | Mean | 1.90 | 12.9 | 14.2 | 0.91 | 8.5 | 80 |
Min–Max | 1.25–2.58 | 10.8–15.1 | 11.7–16.4 | 0.86–1.06 | 7.2–9.9 | ||
M&S tomato (Cherry) | Mean | 15.00 | 27.9 | 29.0 | 0.96 | 6.6 | 64 |
Min–Max | 6.70–21.55 | 20.5–34.8 | 18.9–36.3 | 0.87–1.18 | 4.0–9.0 | ||
M&S tomato (Others) | Mean | 37.20 | 36.3 | 39.6 | 0.92 | 6.1 | 45 |
Min–Max | 13.28–95.84 | 25.6–48.1 | 28.2–56.5 | 0.70–1.0 | 4.7–9.4 | ||
Detail of M&S tomato samples | Mean | ||||||
Cherry tomatoes | |||||||
1. Cherry tomato, Kumamoto Pref., Dec. (UC) | 19.26 | 29.6 | 32.1 | 0.92 | 4.7 | 9 | |
2. Cherry tomato, Kumamoto Pref., Nov (UC) | 16.09 | 28.9 | 30.1 | 0.96 | 5.6 | 10 | |
3. Cherry tomato, Gunma Pref. (UC) (1) | 15.13 | 27.2 | 29.4 | 0.93 | 7.0 | 16 | |
4. Cherry tomato (UC, UPL) | 15.05 | 30.1 | 28.4 | 1.06 | 7.7 | 13 | |
5. Cherry tomato, Gunma Pref. (UC) (2) | 9.47 | 23.8 | 25.0 | 0.95 | 8.0 | 16 | |
Non-cherry tomatoes | |||||||
1. Frutica, medium-sized, Gunma Pref. | 60.15 | 42.5 | 48.3 | 0.88 | 5.8 | 10 | |
2. Medium-sized tomato (UC, UPL) | 51.84 | 41.9 | 45.1 | 0.93 | 5.9 | 8 | |
3. Cocktail tomato variety (UC, UPL) | 28.90 | 35.2 | 36.4 | 0.96 | 6.2 | 8 | |
4. Midi-tomato (UC, UPL) | 23.18 | 30.7 | 34.7 | 0.88 | 5.6 | 11 | |
5. Frutica, small-sized, Gunma Pref. | 21.93 | 31.2 | 33.7 | 0.93 | 7.1 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ino, M.; Ono, E.; Shimizu, Y.; Omasa, K. Verification of Commercial Near-Infrared Spectroscopy Measurement and Fresh Weight Diversity Modeling in Brix% for Small Tomato Fruits with Various Cultivars and Growth Conditions. Sensors 2023, 23, 5460. https://doi.org/10.3390/s23125460
Ino M, Ono E, Shimizu Y, Omasa K. Verification of Commercial Near-Infrared Spectroscopy Measurement and Fresh Weight Diversity Modeling in Brix% for Small Tomato Fruits with Various Cultivars and Growth Conditions. Sensors. 2023; 23(12):5460. https://doi.org/10.3390/s23125460
Chicago/Turabian StyleIno, Masazumi, Eiichi Ono, Yo Shimizu, and Kenji Omasa. 2023. "Verification of Commercial Near-Infrared Spectroscopy Measurement and Fresh Weight Diversity Modeling in Brix% for Small Tomato Fruits with Various Cultivars and Growth Conditions" Sensors 23, no. 12: 5460. https://doi.org/10.3390/s23125460
APA StyleIno, M., Ono, E., Shimizu, Y., & Omasa, K. (2023). Verification of Commercial Near-Infrared Spectroscopy Measurement and Fresh Weight Diversity Modeling in Brix% for Small Tomato Fruits with Various Cultivars and Growth Conditions. Sensors, 23(12), 5460. https://doi.org/10.3390/s23125460