Long-Acting Real-Time Microscopic Monitoring Inside the Proton Exchange Membrane Water Electrolyzer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of Flexible Micro-Oxygen Sensor
- (a)
- Wash the PI film with acetone and methanol organic solutions, respectively. Use DI water to remove residual methanol, repel surface dust and residual grease, and increase the adhesion of thin film metal.
- (b)
- Then, use an E-beam evaporator to first vapor-deposit Cr as an adhesive layer between Au and PI film to promote the adhesion between gold and PI film, and then use a plating rate of 0.1 Å/s to Complete the deposition step of gold with a thickness of 1200 Å.
- (c)
- Spin-coat AZ P4620 (positive photoresist), expose and develop to define the electrode pattern of the micro-oxygen sensor.
- (d)
- Use Au etchant (Type-TFA) to etch Au, then use Cr etchant (Cr-7T) to etch Cr, and remove the photoresist that was originally used as an etching mask with Remove 1165.
- (e)
- Then, spin coat AZ P4620 once again as a spray mask. The micro-oxygen sensor pattern is defined by exposure; the required pattern can be developed by developer.
- (f)
- The sputtering machine is used to deposit a thin layer of SnO2 onto the surface of the pattern, which will serve as the gas sensing layer, and a layer of Pt is then deposited onto the SnO2 layer, which will serve as the catalyst layer.
- (g)
- The sample should then be immersed in 80 °C photoresist remover (Remove 1165) for 20 min. Afterwards, the photoresist mask should be removed using lift-off, followed by cleaning with acetone and methanol.
2.2. Process Integration Development of Flexible Seven-in-One Microsensor
3. Results and Discussion
3.1. PEMWE Real-Time Microscopic Monitoring
3.1.1. PEMWE Real-Time Microscopic Monitoring
3.1.2. PEMWE Testing Environment
3.1.3. PEMWE Voltage Test
3.1.4. PEMWE Current Test
3.1.5. PEMWE Temperature Test
3.1.6. PEMWE Humidity Test
3.1.7. PEMWE Flow Test
3.1.8. PEMWE Pressure Test
3.1.9. PEMWE Oxygen Test
3.2. Accelerated Aging Performance Comparison of PEMWE
3.2.1. Temperature Rise Test for PEMWE
3.2.2. Pressure Variation Test for PEMWE
3.2.3. Flowrate Variation Test for PEMWE
3.2.4. Boosting Test for High-Pressure PEMWE at Different Flow Rates
3.2.5. PEMWE Voltage Decay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Demirhan, C.D.; Tso, W.W.; Ogumerem, G.S.; Pistikopoulos, E.N. Energy systems engineering—A guided tour. BMC Chem. Eng. 2019, 1, 11–30. [Google Scholar] [CrossRef] [Green Version]
- Ceylan, C.; Devrim, Y. Design and simulation of the PV/PEM fuel cell based hybrid energy system using MATLAB/Simulink for greenhouse application. Int. J. Hydrogen Energy 2021, 46, 22092–22106. [Google Scholar] [CrossRef]
- Sazali, N. Emerging technologies by hydrogen: A review. Int. J. Hydrogen Energy 2020, 45, 18753–18771. [Google Scholar] [CrossRef]
- Widera, B. Renewable hydrogen implementations for combined energy storage, transportation and stationary applications. Therm. Sci. Eng. Prog. 2020, 16, 100460–100467. [Google Scholar] [CrossRef]
- Ajanovic, A.; Haas, R. Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector. Int. J. Hydrogen Energy 2021, 46, 10049–10058. [Google Scholar] [CrossRef]
- Miotti, M.; Hofer, J.; Bauer, C. Integrated environmental and economic assessment of current and future fuel cell vehicles. Int. J. Life Cycle Assess. 2017, 22, 94–110. [Google Scholar] [CrossRef] [Green Version]
- Turoń, K. Hydrogen-powered vehicles in urban transport systems–current state and development. Transp. Res. Procedia 2020, 45, 835–841. [Google Scholar] [CrossRef]
- Wilberforce, T.; Alaswad, A.; Palumbo, A.; Dassisti, M.; Olabi, A.G. Advances in stationary and portable fuel cell applications. Int. J. Hydrogen Energy 2016, 41, 16509–16522. [Google Scholar] [CrossRef] [Green Version]
- Posdziech, O.; Schwarze, K.; Brabandt, J. Efficient hydrogen production for industry and electricity storage via high-temperature electrolysis. Int. J. Hydrogen Energy 2019, 44, 19089–19101. [Google Scholar] [CrossRef]
- Jiang, B.; Yuan, H.; Dang, Q.; Wang, T.; Pang, T.; Cheng, Y.; Wu, K.; Wu, X.; Shao, M. Quantitative evaluation of synergistic effects for Pt nanoparticles embedded in N-enriched carbon matrix as an efficient and durable catalyst for the hydrogen evolution reaction and their PEMWE performance. Int. J. Hydrogen Energy 2019, 44, 31121–31128. [Google Scholar] [CrossRef]
- Santos, D.M.F.; Sequeira, C.A.C.; Figueiredo, J.L. Hydrogen production by alkaline water electrolysis. Quím Nova 2013, 36, 1176–1193. [Google Scholar] [CrossRef] [Green Version]
- Mirshekari, G.; Ouimet, R.; Zeng, Z.; Yu, H.; Bliznakov, S.; Bonville, L.; Niedzwiecki, A.; Capuano, C.; Ayers, K.; Maric, R. High-performance and cost-effective membrane electrode assemblies for advanced proton exchange membrane water electrolyzers: Long-term durability assessment. Int. J. Hydrogen Energy 2021, 46, 1526–1539. [Google Scholar] [CrossRef]
- Olivier, P.; Bourasseau, C.; Bouamama, B. Modelling, simulation and analysis of a PEM electrolysis system. IFAC-PapersOnLine 2016, 49, 1014–1019. [Google Scholar] [CrossRef]
- Sartory, M.; Ogris, E.W.; Salman, P.; Fellinger, T.; Justl, M.; Trattner, A.; Klell, M. Theoretical and experimental analysis of an asymmetric high pressure PEM water electrolyser up to 155bar. Int. J. Hydrogen Energy 2017, 42, 30493–30508. [Google Scholar] [CrossRef]
- Lu, X.; Du, B.; Zhou, S.; Zhu, W.; Li, Y.; Yang, Y.; Xie, C.; Zhao, B.; Zhang, L.; Song, J.; et al. Optimization of power allocation for wind-hydrogen system multi-stack PEM water electrolyzer considering degradation conditions. Int. J. Hydrogen Energy 2023, 48, 5850–5872. [Google Scholar] [CrossRef]
- Frensch, S.H.; Onana, F.F.; Serre, G.; Thoby, D.; Araya, S.S.; Kær, S.K. Influence of the operation mode on PEM water electrolysis degradation. Int. J. Hydrogen Energy 2019, 44, 29889–29898. [Google Scholar] [CrossRef]
- Aßmann, P.; Gago, A.S.; Gazdzicki, P.; Friedrich, K.A.; Wark, M. Toward developing accelerated stress tests for proton exchange membrane electrolyzers. Curr. Opin. Electrochem. 2020, 21, 225–233. [Google Scholar] [CrossRef]
- Onana, F.F.; Chandesris, M.; Médeau, V.; Chelghoum, S.; Thoby, D.; Guillet, N. Investigation on the degradation of MEAs for PEM water electrolysers part I: Effects of testing conditions on MEA performances and membrane properties. Int. J. Hydrogen Energy 2016, 41, 16629–16634. [Google Scholar]
- Siracusano, S.; Dijk, N.V.; Backhouse, R.; Merlo, L.; Baglio, V.; Aricò, A.S. Degradation issues of PEM electrolysis MEAs. Renew. Energy 2018, 123, 52–57. [Google Scholar] [CrossRef]
- Müller, M.; Carmo, M.; Glüsen, A.; Hehemann, M.; Saba, S.; Zwaygardt, W.; Stolten, D. Water management in membrane electrolysis and options for advanced plants. Int. J. Hydrogen Energy 2019, 44, 10147–10155. [Google Scholar] [CrossRef]
- Verdin, B.; Onana, F.F.; Germe, S.; Serre, G.; Jacques, P.A.; Millet, P. Operando current mapping on PEM water electrolysis cells. Influence of mechanical stress. Int. J. Hydrogen Energy 2017, 42, 25848–25859. [Google Scholar] [CrossRef]
- Lee, C.Y.; Chen, C.H.; Chen, S.Y.; Hsieh, H.T. High-Pressure-Resistant Flexible Seven-in-One Microsensor Embedded in High-Pressure Proton Exchange Membrane Water Electrolyzer for Real-Time Microscopic Measurement. Membranes 2022, 12, 919. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-Y.; Chen, C.-H.; Chuang, H.-C.; Hsieh, H.-T.; Chiu, Y.-C. Long-Acting Real-Time Microscopic Monitoring Inside the Proton Exchange Membrane Water Electrolyzer. Sensors 2023, 23, 5595. https://doi.org/10.3390/s23125595
Lee C-Y, Chen C-H, Chuang H-C, Hsieh H-T, Chiu Y-C. Long-Acting Real-Time Microscopic Monitoring Inside the Proton Exchange Membrane Water Electrolyzer. Sensors. 2023; 23(12):5595. https://doi.org/10.3390/s23125595
Chicago/Turabian StyleLee, Chi-Yuan, Chia-Hung Chen, Hsian-Chun Chuang, Hsiao-Te Hsieh, and Yen-Chen Chiu. 2023. "Long-Acting Real-Time Microscopic Monitoring Inside the Proton Exchange Membrane Water Electrolyzer" Sensors 23, no. 12: 5595. https://doi.org/10.3390/s23125595
APA StyleLee, C. -Y., Chen, C. -H., Chuang, H. -C., Hsieh, H. -T., & Chiu, Y. -C. (2023). Long-Acting Real-Time Microscopic Monitoring Inside the Proton Exchange Membrane Water Electrolyzer. Sensors, 23(12), 5595. https://doi.org/10.3390/s23125595