A Circuit-Level Solution for Secure Temperature Sensor
Abstract
:1. Introduction
- (1)
- We propose a secured temperature sensor design to address the security issues in sensors. More specifically, the proposed sensor has two secured units, one unit (transducer) sensing the temperature in a wide range and detecting fault attacks and another unit leveraging a statistical method to generate an anomaly detection signal.
- (2)
- We leverage the principle of temperature compensation to design the transducer unit, which exploits two complementary currents to detect attacks in sensors without a golden reference.
- (3)
- A statistical method is utilized to compare the estimated sensor data and the real-time data and then detect anomalies in the signal conditioning unit.
- (4)
- The proposed secure sensor can identify and isolate the fault attacks with a low overhead design compared to existing works at the circuit level.
2. Attack Scenarios on Temperature Sensors
3. Proposed Secure Sensor Architecture
3.1. Overview of Proposed Sensor
3.2. Attack-Resilient Transducer Unit
3.3. Anomaly Detection Unit
3.3.1. Sensor Reading Estimation
3.3.2. Sensor Anomaly Detection
4. Simulation-Based Evaluation
4.1. Simulation Setup
4.2. Key Performance of Proposed Temperature Sensor
4.2.1. Power Supply Rejection Ratio
4.2.2. Resilience against Under-Powering Attack at Transducer Level
4.2.3. Resilience against Analog Trojan Attack at Transducer Level
4.3. Reliability against Anomalous Data in Signal Conditioning Unit
4.3.1. Estimated Sensor Data
4.3.2. Anomaly Detection Capability
4.4. Quantitative Analysis of Hardware Overhead and Features
5. Discussion and Future Work
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
EV | Electric Vehicle |
BMS | Battery Management System |
BTMS | Battery Thermal Management System |
PTAT | Proportional to Absolute Temperature |
CTAT | Complementary to Absolute Temperature |
ZTC | Zero Temperature Coefficient |
ADC | Analog to Digital Converter |
PSRR | Power Supply Rejection Ratio |
References
- Javaid, M.; Haleem, A.; Singh, R.P.; Rab, S.; Suman, R. Significance of sensors for industry 4.0: Roles, capabilities, and applications. Sens. Int. 2021, 2, 100110. [Google Scholar] [CrossRef]
- Jamshed, M.A.; Ali, K.; Abbasi, Q.H.; Imran, M.A.; Ur-Rehman, M. Challenges, Applications, and Future of Wireless Sensors in Internet of Things: A Review. IEEE Sens. J. 2022, 22, 5482–5494. [Google Scholar] [CrossRef]
- Kajol, M.A.; Riad, M.R.A.; Kabir, M.; Sadman, A.A.M.S.; Hossam-E-Haider, M. Design and Implementation of a Control System for CanSat Comeback Mission with Ground Station Communication Link. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 598–601. [Google Scholar] [CrossRef]
- Precedence, R. Sensors Market Size to Reach Around USD 508.64 Billion by 2032. 2023. Available online: https://tinyurl.com/4vyv727y (accessed on 24 May 2023).
- Bae, Y.; Bhattacharya, S.; Cui, B.; Lee, S.; Li, Y.; Zhang, L.; Im, P.; Adetola, V.; Vrabie, D.; Leach, M.; et al. Sensor impacts on building and HVAC controls: A critical review for building energy performance. Adv. Appl. Energy 2021, 4, 100068. [Google Scholar] [CrossRef]
- Kim, J.H.; Koo, Y.; Song, W.; Hong, S.J. On-Wafer Temperature Monitoring Sensor for Condition Monitoring of Repaired Electrostatic Chuck. Electronics 2022, 11, 880. [Google Scholar] [CrossRef]
- Rao, A.S.; Radanovic, M.; Liu, Y.; Hu, S.; Fang, Y.; Khoshelham, K.; Palaniswami, M.; Ngo, T. Real-time monitoring of construction sites: Sensors, methods, and applications. Autom. Constr. 2022, 136, 104099. [Google Scholar] [CrossRef]
- Tete, P.R.; Gupta, M.M.; Joshi, S.S. Developments in battery thermal management systems for electric vehicles: A technical review. J. Energy Storage 2021, 35, 102255. [Google Scholar] [CrossRef]
- Barua, A.; Faruque, M.A.A. Sensor Security: Current Progress, Research Challenges, and Future Roadmap. arXiv 2022, arXiv:2208.09741. [Google Scholar]
- Ivanov, R.; Pajic, M.; Lee, I. Attack-Resilient Sensor Fusion for Safety-Critical Cyber-Physical Systems. ACM Trans. Embed. Comput. Syst. 2016, 15, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Fu, K.; Xu, W. Risks of Trusting the Physics of Sensors. Commun. ACM 2018, 61, 20–23. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.; Mihankhah, E.; Lv, C.; Wang, D. Detection and Isolation of Sensor Attacks for Autonomous Vehicles: Framework, Algorithms, and Validation. IEEE Trans. Intell. Transp. Syst. 2022, 23, 8247–8259. [Google Scholar] [CrossRef]
- Liu, Z.; Ahmed, Q.; Zhang, J.; Rizzoni, G.; He, H. Structural analysis based sensors fault detection and isolation of cylindrical lithium-ion batteries in automotive applications. Control Eng. Pract. 2016, 52, 46–58. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zhang, Z.; Chen, Y.; Li, H.; Liu, C.; Lu, J.; Li, R. Sensor Fault Detection Combined Data Quality Optimization of Energy System for Energy Saving and Emission Reduction. Processes 2022, 10, 347. [Google Scholar] [CrossRef]
- Lu, C.Y.; Ravikumar, S.; Sali, A.D.; Eberlein, M.; Lee, H.J. An 8b subthreshold hybrid thermal sensor with ±1.07 °C inaccuracy and single-element remote-sensing technique in 22 nm FinFET. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 318–320. [Google Scholar] [CrossRef]
- Eberlein, M.; Pretl, H. A Compact Thermal Sensor with Duty-Cycle Modulation on 1200 µm2 in 7 nm FinFET. In Proceedings of the 2021 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 19–22 April 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Jalalifar, M.; Byun, G.S. A Wide Range CMOS Temperature Sensor With Process Variation Compensation for On-Chip Monitoring. IEEE Sens. J. 2016, 16, 5536–5542. [Google Scholar] [CrossRef]
- Xu, C.; Xin, M.; Wang, Y.; Tang, J.; Liu, D.; Jiang, X. A Low-power Bandgap Reference Voltage Source for Smart Grid Sensor System on Chip. In Proceedings of the 2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China, 6–8 June 2023; pp. 411–415. [Google Scholar] [CrossRef]
- Kajol, M.A.; Yu, Q. Attack-Resilient Temperature Sensor Design. In Proceedings of the 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 21–25 May 2023. (in press). [Google Scholar]
- Xiong, R.; Yu, Q.; Shen, W.; Lin, C.; Sun, F. A Sensor Fault Diagnosis Method for a Lithium-Ion Battery Pack in Electric Vehicles. IEEE Trans. Power Electron. 2019, 34, 9709–9718. [Google Scholar] [CrossRef]
- Zussa, L.; Dutertre, J.M.; Clédière, J.; Tria, A. Power supply glitch induced faults on FPGA: An in-depth analysis of the injection mechanism. In Proceedings of the 2013 IEEE 19th International On-Line Testing Symposium (IOLTS), Chania, Greece, 8–10 July 2013; pp. 110–115. [Google Scholar] [CrossRef] [Green Version]
- Beringuier-Boher, N.; Gomina, K.; Hely, D.; Rigaud, J.B.; Beroulle, V.; Tria, A.; Damiens, J.; Gendrier, P.; Candelier, P. Voltage Glitch Attacks on Mixed-Signal Systems. In Proceedings of the 2014 17th Euromicro Conference on Digital System Design, Verona, Italy, 27–29 August 2014; pp. 379–386. [Google Scholar] [CrossRef]
- Monjur, M.; Calzadillas, J.; Kajol, M.; Yu, Q. Hardware Security in Advanced Manufacturing. In Proceedings of the Great Lakes Symposium on VLSI 2022 (GLSVLSI’22), New York, NY, USA, 6–8 June 2022; pp. 469–474. [Google Scholar] [CrossRef]
- Wang, Q.; Geiger, R.L.; Chen, D. Hardware Trojans embedded in the dynamic operation of analog and mixed-signal circuits. In Proceedings of the 2015 National Aerospace and Electronics Conference (NAECON), Dayton, OH, USA, 15–19 June 2015; pp. 155–158. [Google Scholar] [CrossRef]
- Yang, K.; Hicks, M.; Dong, Q.; Austin, T.; Sylvester, D. A2: Analog Malicious Hardware. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 23–25 May 2016; pp. 18–37. [Google Scholar] [CrossRef]
- Filanovsky, I.; Allam, A. Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 2001, 48, 876–884. [Google Scholar] [CrossRef]
- Epperson, J.F. Interpolation and Approximation. In An Introduction to Numerical Methods and Analysis; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Jiang, W.; Xie, C.; Zhuang, M.; Shou, Y.; Tang, Y. Sensor Data Fusion with Z-Numbers and Its Application in Fault Diagnosis. Sensors 2016, 16, 1509. [Google Scholar] [CrossRef] [Green Version]
- Cartagena, L.; Barbin, S. Low power CMOS temperature protection sensor for smart cards. In Proceedings of the 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Aguas de Lindoia, Brazil, 27–30 August 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than smape, Mae, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhou, Q.; Xiao, F. A system-level fault detection and diagnosis strategy for HVAC systems involving sensor faults. Energy Build. 2010, 42, 477–490. [Google Scholar] [CrossRef]
- Dey, S.; Mohon, S.; Pisu, P.; Ayalew, B. Sensor Fault Detection, Isolation, and Estimation in Lithium-Ion Batteries. IEEE Trans. Control Syst. Technol. 2016, 24, 2141–2149. [Google Scholar] [CrossRef]
- Li, X.; Ou, X.; Li, Z.; Wei, H.; Zhou, W.; Duan, Z. On-Line Temperature Estimation for Noisy Thermal Sensors Using a Smoothing Filter-Based Kalman Predictor. Sensors 2018, 18, 433. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Block, S.T.; Duarte, D.E.; Li, C. A 0.45-V MOSFETs-Based Temperature Sensor Front-End in 90 nm CMOS With a Noncalibrated ±3.5 °C 3σ Relative Inaccuracy From −55 °C to 105 °C. IEEE Trans. Circuits Syst. II Express Briefs 2013, 60, 771–775. [Google Scholar] [CrossRef]
Process/Temp | −40 C | 0 C | 40 C | 80 C | 125 C |
---|---|---|---|---|---|
Typical-Typical | 2.08% | −0.20% | 0% | −0.20% | −0.41% |
Fast-Fast | −3.37% | −1.38% | 0.61% | 2.30% | 3.83% |
Slow-Slow | 10.31% | 1.43% | −0.57% | −2.57% | −4.87% |
Sensors | Analysis Setup | Temperature Range (C) | Power (W) | Technology (m) | PSRR (dB) | Attack Detection Capability |
---|---|---|---|---|---|---|
ISSCC’18 [15] | Measured | −30 to 120 | 50 | 0.022 | - | No |
VLSI-DAT’21 [16] | Measured | −20 to 125 | 27.5 | 0.07 | −43.98 | No |
Sens. J.’16 [17] | Measured | −40 to 100 | 264 | 0.18 | - | No |
IMOC’17 [29] | Simulated | −20 to 120 | - | 0.09 | −62 | No |
TCAS-II’13 [34] | Measured | −55 to 105 | 48 | 0.09 | −60 | No |
ICCECE’23 [18] | Simulated | −40 to 85 | 65 | 0.055 | −78 | No |
This work | Simulated | −40 to 125 | 41 | 0.18 | −69 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kajol, M.A.; Monjur, M.M.R.; Yu, Q. A Circuit-Level Solution for Secure Temperature Sensor. Sensors 2023, 23, 5685. https://doi.org/10.3390/s23125685
Kajol MA, Monjur MMR, Yu Q. A Circuit-Level Solution for Secure Temperature Sensor. Sensors. 2023; 23(12):5685. https://doi.org/10.3390/s23125685
Chicago/Turabian StyleKajol, Mashrafi Alam, Mohammad Mezanur Rahman Monjur, and Qiaoyan Yu. 2023. "A Circuit-Level Solution for Secure Temperature Sensor" Sensors 23, no. 12: 5685. https://doi.org/10.3390/s23125685
APA StyleKajol, M. A., Monjur, M. M. R., & Yu, Q. (2023). A Circuit-Level Solution for Secure Temperature Sensor. Sensors, 23(12), 5685. https://doi.org/10.3390/s23125685