Counting Finger and Wrist Movements Using Only a Wrist-Worn, Inertial Measurement Unit: Toward Practical Wearable Sensing for Hand-Related Healthcare Applications
Abstract
:1. Introduction
2. Methods
2.1. Wrist-Worn Sensors
2.2. Experiments and Data Sets
2.3. Data Preprocessing
2.4. Convolutional Neural Network Design
2.5. Training the Network
2.6. Statistical Analysis and Performance Analysis
3. Results
3.1. HARCS Can Identify Unstructured Hand Movements in People with Stroke in-the-Wild across a Wide Range of Impairment Levels
3.2. HARCS Sensitivity to Hand-Only and Arm-Only Movement
3.3. HARCS Can Identify Structured Hand Movements, but Accuracy Depends on Movement Type
4. Discussion
4.1. Discussion of HARCS Performance
4.2. Limitations and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lloyd, M.; MacDonald, M.; Lord, C. Motor Skills of Toddlers with Autism Spectrum Disorders. Autism 2013, 17, 133–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwerz de Lucena, D.; Rowe, J.B.; Okita, S.; Chan, V.; Cramer, S.C.; Reinkensmeyer, D.J. Providing Real-Time Wearable Feedback to Increase Hand Use after Stroke: A Randomized, Controlled Trial. Sensors 2022, 22, 6938. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.D. Targeting Recovery: Priorities of the Spinal Cord-Injured Population. J. Neurotrauma 2004, 21, 1371–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagberg, M.; Morgenstern, H.; Kelsh, M. Impact of Occupations and Job Tasks on the Prevalence of Carpal Tunnel Syndrome. Scand. J. Work. Environ. Health 1992, 18, 337–345. [Google Scholar] [CrossRef] [Green Version]
- Likitlersuang, J.; Sumitro, E.R.; Cao, T.; Visée, R.J.; Kalsi-Ryan, S.; Zariffa, J. Egocentric Video: A New Tool for Capturing Hand Use of Individuals with Spinal Cord Injury at Home. J. NeuroEngineering Rehabil. 2019, 16, 83. [Google Scholar] [CrossRef]
- Kim, Y.; Jung, H.-T.; Park, J.; Kim, Y.; Ramasarma, N.; Bonato, P.; Choe, E.K.; Lee, S.I. Towards the Design of a Ring Sensor-Based MHealth System to Achieve Optimal Motor Function in Stroke Survivors. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 3, 1–26. [Google Scholar] [CrossRef]
- Friedman, N.; Rowe, J.B.; Reinkensmeyer, D.J.; Bachman, M. The Manumeter: A Wearable Device for Monitoring Daily Use of the Wrist and Fingers. IEEE J. Biomed. Health Inform. 2014, 18, 1804–1812. [Google Scholar] [CrossRef]
- Rowe, J.B.; Friedman, N.; Bachman, M.; Reinkensmeyer, D.J. The Manumeter: A Non-Obtrusive Wearable Device for Monitoring Spontaneous Use of the Wrist and Fingers. In Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, USA, 24–26 June 2013; pp. 1–6. [Google Scholar]
- Schwerz de Lucena, D.; Rowe, J.; Chan, V.; Reinkensmeyer, D.J. Magnetically Counting Hand Movements: Validation of a Calibration-Free Algorithm and Application to Testing the Threshold Hypothesis of Real-World Hand Use after Stroke. Sensors 2021, 21, 1502. [Google Scholar] [CrossRef]
- Harrison, C.; Tan, D.; Morris, D. Skinput: Appropriating the Body as an Input Surface. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, New York, NY, USA, 10 April 2010; pp. 453–462. [Google Scholar]
- Banos, O.; Galvez, J.-M.; Damas, M.; Pomares, H.; Rojas, I. Window Size Impact in Human Activity Recognition. Sensors 2014, 14, 6474–6499. [Google Scholar] [CrossRef] [Green Version]
- SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python|Nature Methods. Available online: https://www.nature.com/articles/s41592-019-0686-2?report=reader (accessed on 3 April 2022).
- Schwerz de Lucena, D. New Technologies for On-Demand Hand Rehabilitation in the Living Environment after Neurologic Injury; University of California Irvine: Irvine, CA, USA, 2019. [Google Scholar]
- Madgwick, S.O.H. An Efficient Orientation FIlter for Inertial and Inertial/Magnetic Sensor Arrays. Rep. X-Io Univ. Bristol 2010, 30, 113–118. [Google Scholar]
- Bicego, M.; Baldo, S. Properties of the Box–Cox Transformation for Pattern Classification. Neurocomputing 2016, 218, 390–400. [Google Scholar] [CrossRef]
- Cheddad, A. On Box-Cox Transformation for Image Normality and Pattern Classification. IEEE Access 2020, 8, 154975–154983. [Google Scholar] [CrossRef]
- Atkinson, A.C.; Riani, M.; Corbellini, A. The Box–Cox Transformation: Review and Extensions. Stat. Sci. 2021, 36, 239–255. [Google Scholar] [CrossRef]
- Sakia, R.M. The Box-Cox Transformation Technique: A Review. J. R. Stat. Soc. Ser. Stat. 1992, 41, 169–178. [Google Scholar] [CrossRef]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a Convolutional Neural Network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. [Google Scholar]
- Zhou, Q.; Shan, J.; Ding, W.; Wang, C.; Yuan, S.; Sun, F.; Li, H.; Fang, B. Cough Recognition Based on Mel-Spectrogram and Convolutional Neural Network. Front. Robot. AI 2021, 8, 580080. [Google Scholar] [CrossRef] [PubMed]
- Khunarsal, P.; Lursinsap, C.; Raicharoen, T. Singing Voice Recognition Based on Matching of Spectrogram Pattern. In Proceedings of the 2009 International Joint Conference on Neural Networks, Atlanta, GA, USA, 14–19 June 2009; pp. 1595–1599. [Google Scholar]
- Steven Eyobu, O.; Han, D.S. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network. Sensors 2018, 18, 2892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Chollet, F. Keras. Available online: https://github.com/fchollet/keras (accessed on 2 April 2022).
- Gladstone, D.J.; Danells, C.J.; Black, S.E. The Fugl-Meyer Assessment of Motor Recovery after Stroke: A Critical Review of Its Measurement Properties. Neurorehabil. Neural Repair 2002, 16, 232–240. [Google Scholar] [CrossRef]
- Biswas, D.; Cranny, A.; Gupta, N.; Maharatna, K.; Achner, J.; Klemke, J.; Jöbges, M.; Ortmann, S. Recognizing Upper Limb Movements with Wrist Worn Inertial Sensors Using K-Means Clustering Classification. Hum. Mov. Sci. 2015, 40, 59–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panwar, M.; Biswas, D.; Bajaj, H.; Jöbges, M.; Turk, R.; Maharatna, K.; Acharyya, A. Rehab-Net: Deep Learning Framework for Arm Movement Classification Using Wearable Sensors for Stroke Rehabilitation. IEEE Trans. Biomed. Eng. 2019, 66, 3026–3037. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Tharwat, A. Classification Assessment Methods. Appl. Comput. Inform. 2020, 17, 168–192. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Woytowicz, E.J.; Rietschel, J.C.; Goodman, R.N.; Conroy, S.S.; Sorkin, J.D.; Whitall, J.; McCombe Waller, S. Determining Levels of Upper Extremity Movement Impairment by Applying a Cluster Analysis to the Fugl-Meyer Assessment of the Upper Extremity in Chronic Stroke. Arch. Phys. Med. Rehabil. 2017, 98, 456–462. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Rajan, S.; Ramasarma, N.; Bonato, P.; Lee, S.I. The Use of a Finger-Worn Accelerometer for Monitoring of Hand Use in Ambulatory Settings. IEEE J. Biomed. Health Inform. 2019, 23, 599–606. [Google Scholar] [CrossRef]
- Zariffa, J.; Popovic, M.R. Hand Contour Detection in Wearable Camera Video Using an Adaptive Histogram Region of Interest. J. NeuroEngineering Rehabil. 2013, 10, 114. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-H.; Lu, N.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S.; Wu, J.; Won, S.M.; Tao, H.; Islam, A.; et al. Epidermal Electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.K.; Ha, I.; Kim, M.; Choi, J.; Won, P.; Jo, S.; Ko, S.H. A Deep-Learned Skin Sensor Decoding the Epicentral Human Motions. Nat. Commun. 2020, 11, 2149. [Google Scholar] [CrossRef]
- Bravata, D.M.; Smith-Spangler, C.; Sundaram, V.; Gienger, A.L.; Lin, N.; Lewis, R.; Stave, C.D.; Olkin, I.; Sirard, J.R. Using Pedometers to Increase Physical Activity and Improve Health: A Systematic Review. JAMA 2007, 298, 2296. [Google Scholar] [CrossRef] [PubMed]
- Feito, Y.; Bassett, D.R.; Thompson, D.L. Evaluation of Activity Monitors in Controlled and Free-Living Environments. Med. Sci. Sport. Exerc. 2012, 44, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Fuller, D.; Colwell, E.; Low, J.; Orychock, K.; Tobin, M.A.; Simango, B.; Buote, R.; Heerden, D.V.; Luan, H.; Cullen, K.; et al. Reliability and Validity of Commercially Available Wearable Devices for Measuring Steps, Energy Expenditure, and Heart Rate: Systematic Review. JMIR MHealth UHealth 2020, 8, e18694. [Google Scholar] [CrossRef] [PubMed]
- Reissner, L.; Fischer, G.; List, R.; Giovanoli, P.; Calcagni, M. Assessment of Hand Function during Activities of Daily Living Using Motion Tracking Cameras: A Systematic Review. Proc. Inst. Mech. Eng. 2019, 233, 764–783. [Google Scholar] [CrossRef] [PubMed]
KNN | SVM | Perceptron | HARCS | |
---|---|---|---|---|
Accuracy | 61.82 | 66.87 | 72.35 | 77.19 |
F1 score | 44.22 | 61.37 | 70.71 | 77.98 |
Precision | 82.03 | 73.61 | 75.18 | 76.02 |
Recall | 30.51 | 52.81 | 66.98 | 80.62 |
R2 | 0.648 | 0.31 | 0.533 | 0.763 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okita, S.; Yakunin, R.; Korrapati, J.; Ibrahim, M.; Schwerz de Lucena, D.; Chan, V.; Reinkensmeyer, D.J. Counting Finger and Wrist Movements Using Only a Wrist-Worn, Inertial Measurement Unit: Toward Practical Wearable Sensing for Hand-Related Healthcare Applications. Sensors 2023, 23, 5690. https://doi.org/10.3390/s23125690
Okita S, Yakunin R, Korrapati J, Ibrahim M, Schwerz de Lucena D, Chan V, Reinkensmeyer DJ. Counting Finger and Wrist Movements Using Only a Wrist-Worn, Inertial Measurement Unit: Toward Practical Wearable Sensing for Hand-Related Healthcare Applications. Sensors. 2023; 23(12):5690. https://doi.org/10.3390/s23125690
Chicago/Turabian StyleOkita, Shusuke, Roman Yakunin, Jathin Korrapati, Mina Ibrahim, Diogo Schwerz de Lucena, Vicky Chan, and David J. Reinkensmeyer. 2023. "Counting Finger and Wrist Movements Using Only a Wrist-Worn, Inertial Measurement Unit: Toward Practical Wearable Sensing for Hand-Related Healthcare Applications" Sensors 23, no. 12: 5690. https://doi.org/10.3390/s23125690
APA StyleOkita, S., Yakunin, R., Korrapati, J., Ibrahim, M., Schwerz de Lucena, D., Chan, V., & Reinkensmeyer, D. J. (2023). Counting Finger and Wrist Movements Using Only a Wrist-Worn, Inertial Measurement Unit: Toward Practical Wearable Sensing for Hand-Related Healthcare Applications. Sensors, 23(12), 5690. https://doi.org/10.3390/s23125690