Feature Extraction of a Non-Stationary Seismic–Acoustic Signal Using a High-Resolution Dyadic Spectrogram
Abstract
:1. Introduction
2. Theoretical Background
2.1. Heisenberg Time–Frequency Box
2.2. Energy Density
2.3. Spectrogram
2.4. Transform
3. High-Resolution Dyadic Spectrogram
-Gram Function
4. Sources of the Data Used
5. Validation of the -Gram
6. Conclusions
- This tool allows us to know the spectral density of a signal’s energy in a scale–frequency plane. This mathematical tool is especially suitable for the study of seismic signals, which are multi-component, non-stationary, and variable in time.
- The -gram offers an effective solution to address these features and provides a unique perspective in seismic signal analysis.
- The -gram, which is based on the Transform, enhances spectral sensitivity.
- Additionally, the -gram successfully reduces cross-terms, isolates frequency components, and yields a multi-sensitive frequency spectrum. This methodology maximizes spectral purity and has proven to be highly effective for this purpose.
- An important advantage is a demonstration that the variation in the kernel provides a higher sensitivity in the way of knowing the information of the frequency spectrum. This essential feature enables a better understanding and detailed analysis of signals. This crucial feature facilitates a better understanding and more detailed analysis of signals, thereby significantly enhancing the ability to extract precise information from the frequency spectrum.
- Through this method, it is possible to identify a frequency band between 12 Hz and 24 Hz. This band was not perceptible in the other mathematical tools, as shown in Figure 3a, Figure 4, Figure 5, Figure 6 and Figure 7c). This identification has facilitated the establishment of a relationship between the natural frequency vibration of civil structures, typically at approximately 12 Hz, and the frequency components of the second scale of seismic signals during an earthquake. The authors of this study consider this finding as the main cause of the serious damage that occurs in buildings during an earthquake.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klyuev, M.; Schreider, A.; Zverev, A. Seismic-Acoustic Methods for Paleo-Channel Studies. In Shelf Fluvial Paleo Structures: Seabed Seismic Acoustic View; Springer: Berlin/Heidelberg, Germany, 2023; pp. 15–26. [Google Scholar]
- Jiang, C.-T.; Zhou, H.; Xia, M.-M.; Chen, H.-M.; Tang, J.-X. A joint absorbing boundary for the multiple-relaxation-time lattice Boltzmann method in seismic acoustic wavefield modeling. Pet. Sci. 2023, in press. [Google Scholar] [CrossRef]
- McGirr Scott, C.; Teeter Wayne, L.; Wroblewski, R. Ocean Acoustic Analysis of the 1994 Northridge Earthquake. Nav. Inf. Warf. Cent. Pacific 2023, 3303, 1–52. [Google Scholar]
- Trutié-Carrero, E.; Seuret-Jimenez, D.; Nieto-Jalil, J.M. A high-resolution dyadic transform for non-stationary signal analysis. Mathematics 2021, 9, 3041. [Google Scholar] [CrossRef]
- Sarlis, N.V.; Skordas, E.S.; Varotsos, P.A. Similarity of fluctuations in systems exhibiting Self-Organized Criticality. Europhys. Lett. 2011, 96, 28006. [Google Scholar] [CrossRef] [Green Version]
- Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S. Natural Time Analysis of Seismic Electric Signals; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; ISBN 3642164498. [Google Scholar]
- Liu, N.; Gao, J.; Jiang, X.; Zhang, Z.; Wang, Q. Seismic time-frequency analysis via STFT-based concentration of frequency and time. IEEE Geosci. Remote Sens. Lett. 2017, 14, 127–131. [Google Scholar] [CrossRef]
- Han, J.; van der Baan, M. Empirical mode decomposition for seismic time-frequency analysis. Geophysics 2013, 78, O9–O19. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Chen, Z.; Chao, H.; Ke, Y.; Nie, W. Numerical study on seismic response of a rock slope with discontinuities based on the time-frequency joint analysis method. Soil Dyn. Earthq. Eng. 2020, 133, 106112. [Google Scholar] [CrossRef]
- Song, D.; Chen, Z.; Ke, Y.; Nie, W. Seismic response analysis of a bedding rock slope based on time, frequency and time-frequency domains. Eng. Geol. 2020, 274, 105731. [Google Scholar] [CrossRef]
- Bing, P.; Liu, W.; Liu, Y. Seismic Time-Frequency Analysis Based on Time-Reassigned Synchrosqueezing Transform. IEEE Access 2021, 9, 133686–133693. [Google Scholar] [CrossRef]
- Qi, P.; Wang, Y. Seismic time–frequency spectrum analysis based on local polynomial Fourier transform. Acta Geophys. 2020, 68, 1–17. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, H.; Qian, H.; Zhou, X.; Wang, Y.; Lyu, B. A high-precision time–frequency analysis for thin hydrocarbon reservoir identification based on synchroextracting generalized S-transform. Geophys. Prospect. 2020, 68, 941–954. [Google Scholar] [CrossRef]
- Villiger, L.; Samuel Gischig, V.; Doetsch, J.; Krietsch, H.; Oliver Dutler, N.; Jalali, M.; Valley, B.; Selvadurai, P.A.; Mignan, A.; Plenkers, K.; et al. Influence of reservoir geology on seismic response during decameter-scale hydraulic stimulations in crystalline rock. Solid Earth 2020, 11, 627–655. [Google Scholar] [CrossRef]
- Barchi, M.R.; Carboni, F.; Michele, M.; Ercoli, M.; Giorgetti, C.; Porreca, M.; Azzaro, S.; Chiaraluce, L. The influence of subsurface geology on the distribution of earthquakes during the 2016-–2017 Central Italy seismic sequence. Tectonophysics 2021, 807, 228797. [Google Scholar] [CrossRef]
- Kazemi, F.; Mohebi, B.; Jankowski, R. Predicting the seismic collapse capacity of adjacent SMRFs retrofitted with fluid viscous dampers in pounding condition. Mech. Syst. Signal Process. 2021, 161, 107939. [Google Scholar] [CrossRef]
- Estekanchi, H.E.; Vafai, H.A. Seismic Analysis and Design Using the Endurance Time Method; CRC Press: Boca Raton, FL, USA, 2021; ISBN 9781000457643. [Google Scholar]
- Thurber, C. An Introduction to Seismology, Earthquakes, and Earth Structure; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 84, ISBN 144431131X. [Google Scholar]
- Sture, S. Dynamics of Structures: Theory and Applications to Earthquake Engineering. J. Eng. Mech. 2001, 127, 968. [Google Scholar] [CrossRef]
- Suriñach, E.; Flores-Márquez, E.L.; Roig-Lafon, P.; Furdada, G.; Tapia, M. Estimation of avalanche development and frontal velocities based on the spectrogram of the seismic signals generated at the vallée de la sionne test site. Geosciences 2020, 10, 113. [Google Scholar] [CrossRef] [Green Version]
- Fan, G.; Zhang, L.M.; Zhang, J.J.; Yang, C.W. Time-frequency analysis of instantaneous seismic safety of bedding rock slopes. Soil Dyn. Earthq. Eng. 2017, 94, 92–101. [Google Scholar] [CrossRef]
- Wang, D.Y.; Huang, J.P.; Kong, X.; Li, Z.C.; Wang, J. Improving the resolution of seismic traces based on the secondary time–frequency spectrum. Appl. Geophys. 2017, 14, 236–246. [Google Scholar] [CrossRef]
- Liu, N.; Gao, J.; Zhang, B.; Li, F.; Wang, Q. Time-frequency analysis of seismic data using a three parameters S transform. IEEE Geosci. Remote Sens. Lett. 2018, 15, 142–146. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, J.; Liu, N.; Jiang, X. High-Resolution Seismic Time-Frequency Analysis Using the Synchrosqueezing Generalized S-Transform. IEEE Geosci. Remote Sens. Lett. 2018, 15, 374–378. [Google Scholar] [CrossRef]
- Liu, N.; Gao, J.; Zhang, B.; Wang, Q.; Jiang, X. Self-Adaptive Generalized S-Transform and Its Application in Seismic Time-Frequency Analysis. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7849–7859. [Google Scholar] [CrossRef]
- Yuan, S.; Ji, Y.; Shi, P.; Zeng, J.; Gao, J.; Wang, S. Sparse Bayesian Learning-Based Seismic High-Resolution Time-Frequency Analysis. IEEE Geosci. Remote Sens. Lett. 2019, 16, 623–627. [Google Scholar] [CrossRef]
- Liu, W.; Cao, S.; Wang, Z.; Jiang, K.; Zhang, Q.; Chen, Y. A novel approach for seismic time-frequency analysis based on high-order synchrosqueezing transform. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1159–1163. [Google Scholar] [CrossRef]
- Li, Z.; Gao, J.; Wang, Z.; Liu, N.; Yang, Y. Time-Synchroextracting General Chirplet Transform for Seismic Time-Frequency Analysis. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8626–8636. [Google Scholar] [CrossRef]
- Dokht, R.M.H.; Kao, H.; Visser, R.; Smith, B. Seismic event and phase detection using time-frequency representation and convolutional neural networks. Seismol. Res. Lett. 2019, 90, 481–490. [Google Scholar] [CrossRef]
- Wu, G.; Fomel, S.; Chen, Y. Data-driven time–frequency analysis of seismic data using non-stationary Prony method. Geophys. Prospect. 2018, 66, 85–97. [Google Scholar] [CrossRef]
- Kumar, R.; Zhao, W.; Singh, V. Joint time-frequency analysis of seismic signals: A critical review. SDHM Struct. Durab. Health. Monit. 2018, 12, 77–95. [Google Scholar]
- Trutié-Carrero, E.; Seuret-Jiménez, D.; Nieto-Jalil, J.M.; Herrera-Díaz, J.C.; Cantó, J.; Escobedo-Alatorre, J.J. Detection of Background Water Leaks Using a High-Resolution Dyadic Transform. Water 2023, 15, 736. [Google Scholar] [CrossRef]
- Mallat, S. A Wavelet Tour of Signal Processing, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2009; ISBN 9780123743701. [Google Scholar]
- Marsalek, R.; Pomenkova, J.; Kapounek, S. A wavelet-based approach to filter out symmetric macroeconomic shocks. Comput. Econ. 2014, 44, 477–488. [Google Scholar] [CrossRef]
- Mallat, S. A Wavelet Tour of Signal Processing: The Sparse Way; Elsevier: Amsterdam, The Netherlands, 2008; ISBN 9780080922027. [Google Scholar]
- Grami, A. Introduction to Digital Communications; Academic Press: Cambridge, MA, USA, 2015; ISBN 9780124076587. [Google Scholar]
- Li, P.; Roch, M.A.; Klinck, H.; Fleishman, E.; Gillespie, D.; Nosal, E.M.; Shiu, Y.; Liu, X. Learning Stage-Wise GANs for Whistle Extraction in Time-Frequency Spectrograms. IEEE Trans. Multimed. 2023, 14, 1–13. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, S.; Zhang, Z.; Han, L. Rock joint roughness determination method based on deep learning of time-frequency spectrogram. Eng. Appl. Artif. Intell. 2023, 117, 105505. [Google Scholar] [CrossRef]
- Xu, S.; Ru, H.; Li, D.; Shui, P.; Xue, J. Marine Radar Small Target Classification Based on Block-Whitened Time-Frequency Spectrogram and Pre-Trained CNN. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–11. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, X. A Lightweight CNN for Wind Turbine Blade Defect Detection Based on Spectrograms. Machines 2023, 11, 99. [Google Scholar] [CrossRef]
- Tayyab, S.M.; Chatterton, S.; Pennacchi, P. Image-Processing-Based Intelligent Defect Diagnosis of Rolling Element Bearings Using Spectrogram Images. Machines 2022, 10, 908. [Google Scholar] [CrossRef]
- Collins, Z.A.; Gee, K.L.; Sommerfeldt, S.D.; Blotter, J.D. Interior Fourier near-field acoustical holography using energy density. In Proceedings of the Meetings on Acoustics, Proceedings of the 159th Meeting Acoustical Society of America/NOISE-CON 2010, Baltimore, MD, USA, 19–23 April 2010; Acoustical Society of America: New York, NY, USA, 2010; Volume 9, p. 40007. [Google Scholar]
- Ismail, S.; Ismail, B.; Siddiqi, I.; Akram, U. PCG classification through spectrogram using transfer learning. Biomed. Signal Process. Control 2022, 79, 104075. [Google Scholar] [CrossRef]
- Ustubioglu, B.; Tahaoglu, G.; Ulutas, G. Detection of audio copy-move-forgery with novel feature matching on Mel spectrogram. Expert Syst. Appl. 2023, 213, 118963. [Google Scholar] [CrossRef]
- Flores-Márquez, E.L.; Ramírez-Rojas, A.; Perez-Oregon, J.; Sarlis, N.V.; Skordas, E.S.; Varotsos, P.A. Natural time analysis of seismicity within the mexican flat slab before the M7.1 earthquake on 19 september 2017. Entropy 2020, 22, 730. [Google Scholar] [CrossRef]
- SSN, Servicio Sismológico Nacional, México, Universidad Nacional Autónoma de México. 2023. Available online: http://www.ssn.unam.mx/ (accessed on 4 February 2023).
- Carrera-Avendaño, E.; Urquiza-Beltrán, G.; Trutié-Carrero, E.; Nieto-Jalil, J.M.; Carrillo-Pereyra, C.; Seuret-Jiménez, D. Detection of crankshaft faults by means of a modified Welch-Bartlett periodogram. Eng. Fail. Anal. 2022, 132, 105938. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seuret-Jiménez, D.; Trutié-Carrero, E.; Nieto-Jalil, J.M.; García-Aquino, E.D.; Díaz-González, L.; Carballo-Sigler, L.; Quintana-Fuentes, D.; Gaggero-Sager, L.M. Feature Extraction of a Non-Stationary Seismic–Acoustic Signal Using a High-Resolution Dyadic Spectrogram. Sensors 2023, 23, 6051. https://doi.org/10.3390/s23136051
Seuret-Jiménez D, Trutié-Carrero E, Nieto-Jalil JM, García-Aquino ED, Díaz-González L, Carballo-Sigler L, Quintana-Fuentes D, Gaggero-Sager LM. Feature Extraction of a Non-Stationary Seismic–Acoustic Signal Using a High-Resolution Dyadic Spectrogram. Sensors. 2023; 23(13):6051. https://doi.org/10.3390/s23136051
Chicago/Turabian StyleSeuret-Jiménez, Diego, Eduardo Trutié-Carrero, José Manuel Nieto-Jalil, Erick Daniel García-Aquino, Lorena Díaz-González, Laura Carballo-Sigler, Daily Quintana-Fuentes, and Luis Manuel Gaggero-Sager. 2023. "Feature Extraction of a Non-Stationary Seismic–Acoustic Signal Using a High-Resolution Dyadic Spectrogram" Sensors 23, no. 13: 6051. https://doi.org/10.3390/s23136051
APA StyleSeuret-Jiménez, D., Trutié-Carrero, E., Nieto-Jalil, J. M., García-Aquino, E. D., Díaz-González, L., Carballo-Sigler, L., Quintana-Fuentes, D., & Gaggero-Sager, L. M. (2023). Feature Extraction of a Non-Stationary Seismic–Acoustic Signal Using a High-Resolution Dyadic Spectrogram. Sensors, 23(13), 6051. https://doi.org/10.3390/s23136051