Algorithmic Approach to Virtual Machine Migration in Cloud Computing with Updated SESA Algorithm
Abstract
:1. Introduction
- (a)
- Infrastructure as a service (IaaS);
- (b)
- Platform as a service (PaaS);
- (c)
- Software as a service (SaaS).
- (a)
- Allocation of a new VM to the PM;
- (b)
- Management of existing allocated VMs.
- (a)
- Consumer or broker: A consumer or customer of the cloud submits its requirement directly to the cloud or gets it submitted by a broker;
- (b)
- Cloud-service allocator (CSA): The cloud infra is not directly associated with the user and, hence, the CSA negotiates on SLA, prices, and other terms between the service provider and the customer. The service allocation has a service scheduler associated with a CSA, which deals with the completion time and scalability of customer demand;
- (c)
- Physical machine (PM);
- (d)
- Virtual machine (VM).
- (a)
- Hotspot detection: Which PM is to be detected for the migration?
- (b)
- Destination PM detection: Where to migrate?
Algorithms 1: |
Inputs: VM Requirements and Specifications, Host Specifications |
(a) Sort all VM as per the CPU Utilization in descending order |
(b) For every VM in the VM List(Sorted) |
(c) Check if Host can satisfy the VM needs or not |
(d) Calculate Pc |
(e) Check if Pc is least |
(f) If Yes, Allocate VM to Host |
(g) Reduce Host resources by the amount which is consumed by the VM |
(h) Pick Next VM |
Algorithm 2: MM Algorithm |
Input: Hotlist Output: Migration List |
1. Repeat until the hUtil is greater than upper threshold |
2. Forevery vm in the Host’s vmList |
3. If vm.utilization() > hUtil − upper threshold |
4. Evaluate t as t ← vm.utilization() − hUtil + upper threshold |
5. Keep vm as best fit vm until greater t is not attained or host’s utilization does not go below upper threshold |
6. Reduce hUtil by best fit vm.utilization() |
7. Add vm to migration list |
2. Literature Survey
3. Motivation of the Research
4. Methodology
4.1. Detection of the Hotspot
4.2. Selection of VMs
4.3. Selection of PM
4.4. VM Migration
Algorithm 3: SESA |
Input: hostList, VMList, Standard Deviation threshold, Output: high density arranged cluster list of co-located VMs, allocation of VMs |
1. |
2. |
3. |
4. |
5. |
6. |
7. |
8. |
9. |
10. |
11. |
12. |
13. |
14. |
15. |
16. between previous centroid and |
17. |
18. |
19. |
20. |
21. |
22. Choose the Next Centroid to be (CPU, RAM) values for VMwithmaximum ED |
23. |
24. |
25. end for |
26. Calculate the ED between each VMs and all Cluster’s centroids |
27. for each jthVM in VMList do, Where j takes values from 1 to no. of VMs in VMList |
28. for each mth centroid number do, Where mtakes values from 1 to K − 1 |
29. |
30. |
31. Append VM to the Cluster with minimumED |
32. |
33. end for |
34. Arrange the co-located VMs |
35. for each ith VMs cluster list in cluster do |
36. arrangeBy Co-locatedVMs(Cluster.get(i)) |
37. end for |
38. VMList = arrangeBy HighDensityCluster(Cluster) |
4.5. VM Migraion
PSEUDO-CODE CESCA |
Inputs: Output: prioritized |
//Calculate the total number of centroids |
//Calculate Where is based on CPU, is calculated based on AsRAM |
//and are calculated based on BU
// Calculating the average of all p values. Initialize Centroids to empty
// Prioritization of the created clusters
|
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beloglazov, A.; Abawajy, J.; Buyya, R. Energy-Aware Resource Allocation Heuristics for Efficient Management of Data Centers for Cloud Computing. Future Gener. Comput. Syst. 2012, 28, 755–768. [Google Scholar] [CrossRef] [Green Version]
- Baker, B.S.; Coffman, E.G., Jr. A Tight Asymptotic Bound for Next-Fit-Decreasing Bin-Packing. SIAM J. Algebr. Discret. Methods 1981, 2, 147–152. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, Z. A Virtual Machine Dynamic Migration Scheduling Model Based on MBFD Algorithm. Int. J. Comput. Theory Eng. 2015, 7, 278. [Google Scholar]
- Mann, Z.Á. Multicore-Aware Virtual Machine Placement in Cloud Data Centers. IEEE Trans. Comput. 2016, 65, 3357–3369. [Google Scholar] [CrossRef]
- de Castro, L.N. Fundamentals of Natural Computing: An Overview. Phys. Life Rev. 2007, 4, 1–36. [Google Scholar] [CrossRef]
- Kansal, N.J.; Chana, I. Energy-Aware Virtual Machine Migration for Cloud Computing-a Firefly Optimization Approach. J. Grid Comput. 2016, 14, 327–345. [Google Scholar] [CrossRef]
- Durgadevi, P.; Srinivasan, S. Resource Allocation in Cloud Computing Using SFLA and Cuckoo Search Hybridization. Int. J. Parallel Program. 2018, 48, 549–565. [Google Scholar] [CrossRef]
- Nashaat, H.; Ashry, N.; Rizk, R. Smart Elastic Scheduling Algorithm for Virtual Machine Migration in Cloud Computing. J. Supercomput. 2019, 75, 3842–3865. [Google Scholar] [CrossRef]
- Masdari, M.; Khezri, H. Efficient VM Migrations Using Forecasting Techniques in Cloud Computing: A Comprehensive Review. Clust. Comput. 2020, 23, 2629–2658. [Google Scholar] [CrossRef]
- Dubey, K.; Sharma, S.C. An Extended Intelligent Water Drop Approach for Efficient VM Allocation in Secure Cloud Computing Framework. J. King Saud Univ.-Comput. Inf. Sci. 2020, 34, 3948–3958. [Google Scholar] [CrossRef]
- Joshi, A.S.; Munisamy, S.D. Dynamic Degree Balanced with CPU Based VM Allocation Policy for Load Balancing. J. Inf. Optim. Sci. 2020, 41, 543–553. [Google Scholar] [CrossRef]
- Ruan, X.; Chen, H.; Tian, Y.; Yin, S. Virtual Machine Allocation and Migration Based on Performance-to-Power Ratio in Energy-Efficient Clouds. Future Gener. Comput. Syst. 2019, 100, 380–394. [Google Scholar] [CrossRef]
- Jin, S.; Qie, X.; Hao, S. Virtual Machine Allocation Strategy in Energy-Efficient Cloud Data Centres. Int. J. Commun. Netw. Distrib. Syst. 2019, 22, 181–195. [Google Scholar] [CrossRef]
- Jia, H.; Liu, X.; Di, X.; Qi, H.; Cong, L.; Li, J.; Yang, H. Security Strategy for Virtual Machine Allocation in Cloud Computing. Procedia Comput. Sci. 2019, 147, 140–144. [Google Scholar] [CrossRef]
- Gamal, M.; Rizk, R.; Mahdi, H.; Elnaghi, B.E. Osmotic Bio-Inspired Load Balancing Algorithm in Cloud Computing. IEEE Access 2019, 7, 42735–42744. [Google Scholar] [CrossRef]
- Islam, M.; Razzaque, A.; Islam, J. A Genetic Algorithm for Virtual Machine Migration in Heterogeneous Mobile Cloud Computing. In Proceedings of the 2016 International Conference on Networking Systems and Security (NSysS), Dhaka, Bangladesh, 7–9 January 2016; pp. 1–6. [Google Scholar]
- Zhang, X.; Wu, T.; Chen, M.; Wei, T.; Zhou, J.; Hu, S.; Buyya, R. Energy-Aware Virtual Machine Allocation for Cloud with Resource Reservation. J. Syst. Softw. 2019, 147, 147–161. [Google Scholar] [CrossRef]
- Jana, B.; Chakraborty, M.; Mandal, T. A Task Scheduling Technique Based on Particle Swarm Optimization Algorithm in Cloud Environment. In Soft Computing: Theories and Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 525–536. [Google Scholar]
- Gawali, M.B.; Shinde, S.K. Task Scheduling and Resource Allocation in Cloud Computing Using a Heuristic Approach. J. Cloud Comput. 2018, 7, 4. [Google Scholar] [CrossRef]
- Verma, A.; Kaushal, S. A Hybrid Multi-Objective Particle Swarm Optimization for Scientific Workflow Scheduling. Parallel Comput. 2017, 62, 1–19. [Google Scholar] [CrossRef]
- Wang, C.; Hao, Z.; Cui, L.; Zhang, X.; Yun, X. Introspection-Based Memory Pruning for Live VM Migration. Int. J. Parallel Program. 2017, 45, 1298–1309. [Google Scholar] [CrossRef]
- Akbar, M.F.; Munir, E.U.; Rafique, M.M.; Malik, Z.; Khan, S.U.; Yang, L.T. List-Based Task Scheduling for Cloud Computing. In Proceedings of the 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Chengdu, China, 15–18 December 2016; pp. 652–659. [Google Scholar]
- Esa, D.I.; Yousif, A. Scheduling Jobs on Cloud Computing Using Firefly Algorithm. Int. J. Grid Distrib. Comput. 2016, 9, 149–158. [Google Scholar] [CrossRef]
- Lakshmi, R.D.; Srinivasu, N. A Dynamic Approach to Task Scheduling in Cloud Computing Using Genetic Algorithm. J. Theor. Appl. Inf. Technol. 2016, 85, 124–135. [Google Scholar]
- Deshpande, U.; Chan, D.; Guh, T.-Y.; Edouard, J.; Gopalan, K.; Bila, N. Agile Live Migration of Virtual Machines. In Proceedings of the 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Chicago, IL, USA, 23–27 May 2016; pp. 1061–1070. [Google Scholar]
- Forsman, M.; Glad, A.; Lundberg, L.; Ilie, D. Algorithms for Automated Live Migration of Virtual Machines. J. Syst. Softw. 2015, 101, 110–126. [Google Scholar] [CrossRef] [Green Version]
- Pilavare, M.S.; Desai, A. A Novel Approach towards Improving Performance of Load Balancing Using Genetic Algorithm in Cloud Computing. In Proceedings of the 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 19–20 March 2015; pp. 1–4. [Google Scholar]
- Garg, S.K.; Toosi, A.N.; Gopalaiyengar, S.K.; Buyya, R. SLA-Based Virtual Machine Management for Heterogeneous Workloads in a Cloud Datacenter. J. Netw. Comput. Appl. 2014, 45, 108–120. [Google Scholar] [CrossRef]
- Song, W.; Xiao, Z.; Chen, Q.; Luo, H. Adaptive Resource Provisioning for the Cloud Using Online Bin Packing. IEEE Trans. Comput. 2014, 63, 2647–2660. [Google Scholar] [CrossRef]
- Quang-Hung, N.; Nien, P.D.; Nam, N.H.; Huynh Tuong, N.; Thoai, N. A Genetic Algorithm for Power-Aware Virtual Machine Allocation in Private Cloud. In Proceedings of the Information and Communication Technology: International Conference, ICT-EurAsia 2013, Yogyakarta, Indonesia, 25–29 March 2013; pp. 183–191. [Google Scholar]
- Madhusudhan, B.; Sekaran, K.C. A Genetic Algorithm Approach for Virtual Machine Placement in Cloud. In Proceedings of the International Conference on Emerging Research in Computing, Information, Communication and Applications (ERCICA2013), Bangalore, India, 2–3 August 2013. [Google Scholar]
- Priya, B.; Pilli, E.S.; Joshi, R.C. A Survey on Energy and Power Consumption Models for Greener Cloud. In Proceedings of the 2013 3rd IEEE International Advance Computing Conference (IACC), Ghaziabad, India, 22–23 February 2013; pp. 76–82. [Google Scholar]
- Syed-Abdul, S.; Malwade, S.; Nursetyo, A.A.; Sood, M.; Bhatia, M.; Barsasella, D.; Liu, M.F.; Chang, C.-C.; Srinivasan, K.; Li, Y.-C.J.; et al. Virtual Reality among the Elderly: A Usefulness and Acceptance Study from Taiwan. BMC Geriatr. 2019, 19, 223. [Google Scholar] [CrossRef] [Green Version]
- Sehra, S.S.; Singh, J.; Rai, H.S. Assessing OpenStreetMap Data Using Intrinsic Quality Indicators: An Extension to the QGIS Processing Toolbox. Future Internet 2017, 9, 15. [Google Scholar] [CrossRef]
- Talwani, S.; Singla, J. Enhanced Bee Colony Approach for reducing the energy consumption during VM migration in cloud computing environment. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1022, 012069. [Google Scholar] [CrossRef]
- Dai, X.; Xiao, Z.; Jiang, H.; Alazab, M.; Lui, J.C.; Min, G.; Liu, J. Task offloading for cloud-assisted fog computing with dynamic service caching in enterprise management systems. IEEE Trans. Ind. Inform. 2022, 19, 662–672. [Google Scholar] [CrossRef]
- Tran, C.H.; Bui, T.K.; Pham, T.V. Virtual machine migration policy for multi-tier application in cloud computing based on Q-learning algorithm. Computing 2022, 104, 1285–1306. [Google Scholar] [CrossRef]
- Abedi, S.; Ghobaei-Arani, M.; Khorami, E.; Mojarad, M. Dynamic Resource Allocation Using Improved Firefly Optimization Algorithm in Cloud Environment. Appl. Artif. Intell. 2022, 36, 2055394. [Google Scholar] [CrossRef]
- Khan, M.S.A.; Santhosh, R. Hybrid Optimization Algorithm for VM Migration in Cloud Computing. Comput. Electr. Eng. 2022, 102, 108152. [Google Scholar] [CrossRef]
- Zhao HWang, Y.; Han, X.; Jin, S. MAP based modeling method and performance study of a task offloading scheme with time-correlated traffic and VM repair in MEC systems. Wirel. Netw. 2023, 29, 47–68. [Google Scholar] [CrossRef]
- Bali, M.S.; Gupta, K.; Gupta, D.; Srivastava, G.; Juneja, S.; Nauman, A. An effective Technique to Schedule priority aware tasks to offload data at edge and cloud servers. Meas. Sens. 2023, 26, 100670. [Google Scholar] [CrossRef]
- Singh, N.; Hamid, Y.; Juneja, S.; Srivastava, G.; Dhiman, G.; Gadekallu, T.R.; Shah, M.A. Load balancing and service discovery using Docker Swarm for microservice based big data applications. J. Cloud Comput. 2023, 12, 4. [Google Scholar] [CrossRef]
- Kavitha, C.; Gadekallu, T.R.; Kavin, B.P.; Lai, W.C. Filter-Based Ensemble Feature Selection and Deep Learning Model for Intrusion Detection in Cloud Computing. Electronics 2023, 12, 556. [Google Scholar] [CrossRef]
- Zhao, H.; Feng, N.; Li, J.; Zhang, G.; Wang, J.; Wang, Q.; Wan, B. VM performance-aware virtual machine migration method based on ant colony optimization in cloud environment. J. Parallel Distrib. Comput. 2023, 176, 17–27. [Google Scholar] [CrossRef]
- Wu, Q.; Zhao, Y.; Fan, Q.; Fan, P.; Wang, J.; Zhang, C. Mobility-Aware Cooperative Caching in Vehicular Edge Computing Based on Asynchronous Federated and Deep Reinforcement Learning. IEEE J. Sel. Top. Signal Process. 2023, 17, 66–81. [Google Scholar] [CrossRef]
- Song, Y.; Xin, R.; Chen, P.; Zhang, R.; Chen, J.; Zhao, Z. Identifying performance anomalies in fluctuating cloud environments: A robust correlative-GNN-based explainable approach. Future Gener. Comput. Syst. 2023, 145, 77–86. [Google Scholar] [CrossRef]
- Jiang, H.; Dai, X.; Xiao, Z.; Iyengar, A.K. Joint Task Offloading and Resource Allocation for Energy-Constrained Mobile Edge Computing. IEEE Trans. Mob. Comput. 2022, 22, 4000–4015. [Google Scholar] [CrossRef]
- Uppal, M.; Gupta, D.; Juneja, S.; Dhiman, G.; Kautish, S. Cloud-based fault prediction using IoT in office automation for improvisation of health of employees. J. Healthc. Eng. 2021, 2021, 8106467. [Google Scholar] [CrossRef]
(a) | |||||
---|---|---|---|---|---|
‘Total Number of VMs’ | ‘Total Number of PMs’ | ‘PC Proposed’ | ‘PC A. Beloglazov et al. [1]’ | ‘PC H. Nashaat et al. [8]’ | ‘PC S.K. Garg et al. [28]’ |
100 | 10 | 36.19172 | 39.48025 | 39.46517 | 37.844 |
200 | 20 | 82.25001 | 91.4687 | 83.53219 | 87.8643 |
300 | 30 | 123.8285 | 128.453 | 131.6822 | 126.29 |
400 | 40 | 163.2594 | 172.086 | 164.9016 | 167.7453 |
500 | 50 | 216.4734 | 218.5042 | 227.9728 | 219.2439 |
600 | 60 | 252.1217 | 254.6763 | 264.2169 | 259.984 |
700 | 70 | 251.7995 | 256.1971 | 255.911 | 278.066 |
800 | 80 | 316.4311 | 329.7573 | 335.92 | 331.6884 |
900 | 90 | 321.5957 | 337.6987 | 323.512 | 356.4329 |
1000 | 100 | 423.3387 | 442.0967 | 428.9879 | 462.976 |
(b) | |||||
‘Total Number of VMs’ | ‘Total Number of PMs’ | ‘Number of Migrations Proposed’ | ‘Number of Migrations A. Beloglazov et al. [1]’ | ‘Number of Migrations H. Nashaat et al. [8]’ | ‘Number of Migrations S.K. Garg et al. [28]’ |
100 | 10 | 49 | 49 | 49 | 52 |
200 | 20 | 95 | 95 | 99 | 97 |
300 | 30 | 148 | 153 | 160 | 160 |
400 | 40 | 212 | 216 | 233 | 226 |
500 | 50 | 268 | 268 | 293 | 294 |
600 | 60 | 310 | 326 | 344 | 317 |
700 | 70 | 343 | 366 | 349 | 378 |
800 | 80 | 343 | 353 | 348 | 351 |
900 | 90 | 480 | 508 | 508 | 499 |
1000 | 100 | 467 | 481 | 490 | 472 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, A.; Kumar, S.; Gupta, D.; Hamid, Y.; Hamdi, M.; Ksibi, A.; Elmannai, H.; Saini, S. Algorithmic Approach to Virtual Machine Migration in Cloud Computing with Updated SESA Algorithm. Sensors 2023, 23, 6117. https://doi.org/10.3390/s23136117
Kaur A, Kumar S, Gupta D, Hamid Y, Hamdi M, Ksibi A, Elmannai H, Saini S. Algorithmic Approach to Virtual Machine Migration in Cloud Computing with Updated SESA Algorithm. Sensors. 2023; 23(13):6117. https://doi.org/10.3390/s23136117
Chicago/Turabian StyleKaur, Amandeep, Saurabh Kumar, Deepali Gupta, Yasir Hamid, Monia Hamdi, Amel Ksibi, Hela Elmannai, and Shilpa Saini. 2023. "Algorithmic Approach to Virtual Machine Migration in Cloud Computing with Updated SESA Algorithm" Sensors 23, no. 13: 6117. https://doi.org/10.3390/s23136117
APA StyleKaur, A., Kumar, S., Gupta, D., Hamid, Y., Hamdi, M., Ksibi, A., Elmannai, H., & Saini, S. (2023). Algorithmic Approach to Virtual Machine Migration in Cloud Computing with Updated SESA Algorithm. Sensors, 23(13), 6117. https://doi.org/10.3390/s23136117