Towards Onsite Age Estimation of Semen Stains Using Fluorescence Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Instruments
2.3. Spectra Collection and Data Preprocessing
2.4. Age Estimation
Exclusion Criteria
- (a)
- R2 of the fit of the ageing function exceeded 0.85;
- (b)
- Six or more were nonconstant data points;
- (c)
- The difference between the Proteinfl/FOXfl ratio of the first measurement and f0 was at least 0.10;
- (d)
- The signal-to-noise ratio, defined as the extent of decay of the ageing curve relative to the root mean square error of the fit, exceeded 3.92.
3. Results
3.1. Protein and FOX Emission Spectra
3.2. Ageing Kinetics
3.3. Age Estimation of Semen Stains
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taylor, N. Juror attitudes and biases in sexual assault cases. Tr. Iss. Crime Crim. Justice 2007, 344, 1–6. [Google Scholar]
- Hohl, K.; Stanko, E. Complaints of rape and the criminal justice system: Fresh evidence on the attrition problem in England and Wales. Eur. J. Criminol. 2015, 12, 324–341. [Google Scholar] [CrossRef]
- Lonsway, K. Trying to move the elephant in the living room: Responding to the challenge of false rape reports. Violence Against Women 2010, 16, 1356–1371. [Google Scholar] [CrossRef] [PubMed]
- Venema, R. Police Officer Schema of Sexual Assault Reports: Real Rape, Ambiguous Cases, and False Reports. J. Interpers. Violence 2016, 31, 8722–8899. [Google Scholar] [CrossRef]
- Weyermann, C.; Ribaux, O. Situating forensic traces in time. Sci. Justice 2012, 52, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Simard, A.; DesGroseillers, L.; Sarafian, V. Assessment of RNA stability for age determination of body fluid stains. J. Can. Soc. Forensic Sci. 2012, 45, 179–194. [Google Scholar] [CrossRef]
- Jimenez-Verdejo, A.; Osuna, E.; Garcia-Olivares, E.; Luna, A. Study of the enzymatic activity of GGT, LDH, PAP and PSA in semen stains: Application to age calculation. Forensic Sci. Int. 1994, 68, 7–15. [Google Scholar] [CrossRef]
- Das, T.; Ammal, A.; Harshey, A.; Mishra, V.; Srivastava, A. Vibrational spectroscopic approaches for semen analysis in forensic investigation: State of the art and way forward. Microchem. J. 2021, 171, 106810. [Google Scholar] [CrossRef]
- Achetib, N.; Wilk, L.; Schwarz, J.; Lambrechts, S.; Van Leeuwen, T.; Aalders, M.; Van Dam, A. Estimating the Time of Deposition of Semen Traces using Fluorescence Protein-Lipid Oxidation Signatures. Anal. Chem. 2019, 91, 3204–3208. [Google Scholar] [CrossRef] [Green Version]
- Lambrechts, S.; van Dam, A.; de Vos, J.; van Weert, A.; Sijen, T.; Aalders, M. On the autofluorescence of fingermarks. Forensic Sci. Int. 2012, 222, 89–93. [Google Scholar] [CrossRef]
- Van Dam, A.; Schwarz, J.; De Vos, J.; Siebes, M.; Sijen, T.; Van Leeuwen, T.; Aalders, M.; Lambrechts, S. Oxidation monitoring by fluorescence spectroscopy reveals the age of fingermarks. Angew. Chem. Int. Ed. 2014, 53, 6272–6275. [Google Scholar] [CrossRef] [PubMed]
- Kikugawa, K.; Beppu, M. Involvement of lipid oxidation products in the formation of fluorescent and cross-linked proteins. Chem. Phys. Lipids 1987, 44, 277–296. [Google Scholar] [CrossRef] [PubMed]
- De Araujo, W.; Cardoso, T.; da Rocha, R.; Santana, M.; Muñoz, R.; Richter, E.; Paixão, T.; Coltro, W. Portable analytical platforms for forensic chemistry: A review. Anal. Chim. Acta. 2018, 1034, 1–21. [Google Scholar] [CrossRef]
- Kobus, H.; Silenieks, E.; Scharnberg, J. Improving the Effectiveness of Fluorescence for the Detection of Semen Stains on Fabrics. J. Forensic Sci. 2002, 47, JFS2001381_474. [Google Scholar] [CrossRef] [Green Version]
- Ramotowski, R.; Regen, E. The Effect of Electron Beam Irradiation on Forensic Evidence. 1. Latent Print Recovery on Porous and Non-Porous Surfaces. J. Forensic Sci. 2018, 50, JFS2004263. [Google Scholar] [CrossRef]
- Archer, N.; Charles, Y.; Elliott, J.; Jickells, S. Changes in the lipid composition of latent fingerprint residue with time after deposition on a surface. Forensic Sci. Int. 2005, 154, 224–239. [Google Scholar] [CrossRef]
- Almog, J.; Azoury, M.; Elmaliah, Y.; Berenstein, L.; Zaban, A. Fingerprints’ Third Dimension: The Depth and Shape of Fingerprints Penetration into Paper—Cross Section Examination by Fluorescence Microscopy. J. Forensic Sci. 2004, 49, JFS2004009. [Google Scholar] [CrossRef]
- Qi, X.; Yin, M.; Qiao, Z.; Li, Z.; Yu, Z.; Chen, M.; Xiao, T.; Wang, X. Freezing and frozen storage of aquatic products: Mechanism and regulation of protein oxidation. Food Sci. Technol. 2022, 42, e91822. [Google Scholar] [CrossRef]
- Achetib, N.; Falkena, K.; Swayambhu, M.; Aalders, M.; van Dam, A. Specific fluorescent signatures for body fluid identification using fluorescence spectroscopy. Sci. Rep. 2023, 13, 3195. [Google Scholar] [CrossRef]
- Krap, T.; Busscher, L.; Oostra, R.; Aalders, M.; Duijst, W. Phosphorescence of thermally altered human bone. Int. J. Legal Med. 2021, 135, 1025–1034. [Google Scholar] [CrossRef]
- Rathore, P.; Kumar, S. Identification of different body fluids through novel deep blue autofluorescence. Forensic Sci. Int. 2021, 327, 110976. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Sahar, A.; Hitzmann, B. Fluorescence spectroscopy for the monitoring of food processes. Adv. Biochem. Eng. Biotechnol. 2017, 161, 121–151. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achetib, N.; Leemberg, C.C.; Geurts, M.M.P.; Bloemen, P.R.; van den Elzen, R.M.; Aalders, M.C.G.; van Dam, A. Towards Onsite Age Estimation of Semen Stains Using Fluorescence Spectroscopy. Sensors 2023, 23, 6148. https://doi.org/10.3390/s23136148
Achetib N, Leemberg CC, Geurts MMP, Bloemen PR, van den Elzen RM, Aalders MCG, van Dam A. Towards Onsite Age Estimation of Semen Stains Using Fluorescence Spectroscopy. Sensors. 2023; 23(13):6148. https://doi.org/10.3390/s23136148
Chicago/Turabian StyleAchetib, Nihad, Caren C. Leemberg, Mathijs M. P. Geurts, Paul R. Bloemen, Richard M. van den Elzen, Maurice C. G. Aalders, and Annemieke van Dam. 2023. "Towards Onsite Age Estimation of Semen Stains Using Fluorescence Spectroscopy" Sensors 23, no. 13: 6148. https://doi.org/10.3390/s23136148
APA StyleAchetib, N., Leemberg, C. C., Geurts, M. M. P., Bloemen, P. R., van den Elzen, R. M., Aalders, M. C. G., & van Dam, A. (2023). Towards Onsite Age Estimation of Semen Stains Using Fluorescence Spectroscopy. Sensors, 23(13), 6148. https://doi.org/10.3390/s23136148