An Improved Method for Accurate Radiation Measurement Based on Dark Output Noise Drift Compensation
Abstract
:1. Introduction
2. Correction Principle and Correction Device
2.1. The Principle of Dark Output Noise Drift Correction
2.2. Correction Device
3. Exploration of Dark Output Noise Drift
4. The Influence of Dark Output Noise Drift on Emissivity
5. Dark Output Noise Drift Correction
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, C.; Daun, K.J.; Wells, M.A. Spectral Emissivity Characteristics of the Usibor® 1500P Steel during Austenitization in Argon and Air Atmospheres. Int. J. Heat Mass Transf. 2015, 91, 818–828. [Google Scholar] [CrossRef]
- Ueno, S.; Nakamura, Y.; Sugioka, K.-I.; Kubo, M.; Tsukada, T.; Uchikoshi, M.; Fukuyama, H. Normal Spectral Emissivity Measurement of Molten Cu–Co Alloy Using an Electromagnetic Levitator Superimposed with a Static Magnetic Field. Int. J. Thermophys. 2016, 38, 16. [Google Scholar] [CrossRef]
- Graeser, P.; Schiemann, M. Char Particle Emissivity of Two Coal Chars in Oxy-Fuel Atmospheres. Fuel 2016, 183, 405–413. [Google Scholar] [CrossRef]
- Graeser, P.; Schiemann, M. Investigations on the Emissivity of Burning Coal Char Particles: Influence of Particle Temperature and Composition of Reaction Atmosphere. Fuel 2020, 263, 116714. [Google Scholar] [CrossRef]
- Graeser, P.; Schiemann, M. Emissivity of Burning Bituminous Coal Char Particles—Burnout Effects. Fuel 2017, 196, 336–343. [Google Scholar] [CrossRef]
- Yan, W.; Lou, C.; Cheng, Q.; Zhao, P.; Zhang, X. In Situ Measurement of Alkali Metals in an MSW Incinerator Using a Spontaneous Emission Spectrum. Appl. Sci. 2017, 7, 263. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Li, K.; Huang, X.; Yu, L.; Lou, C.; Chen, Y. Online Measurement of the Flame Temperature and Emissivity during Biomass Volatile Combustion Using Spectral Thermometry and Image Thermometry. Energy Fuels 2019, 34, 907–919. [Google Scholar] [CrossRef]
- Zheng, S.; Yang, Y.; Li, X.; Liu, H.; Yan, W.; Sui, R.; Lu, Q. Temperature and Emissivity Measurements from Combustion of Pine Wood, Rice Husk and Fir Wood Using Flame Emission Spectrum. Fuel Process. Technol. 2020, 204, 106423. [Google Scholar] [CrossRef]
- Wang, P.; Xie, Z.; Hu, Z. Study on the Multi-Wavelength Emissivity of GCr15 Steel and Its Application on Temperature Measurement for Continuous Casting Billets. Int. J. Thermophys. 2016, 37, 129. [Google Scholar] [CrossRef]
- Fu, T.; Duan, M.; Tang, J.; Shi, C. Measurements of the Directional Spectral Emissivity Based on a Radiation Heating Source with Alternating Spectral Distributions. Int. J. Heat Mass Transf. 2015, 90, 1207–1213. [Google Scholar] [CrossRef]
- Yu, K.; Tong, R.; Zhang, K.; Liu, Y.; Liu, Y. An Apparatus for the Directional Spectral Emissivity Measurement in the Near Infrared Band. Int. J. Thermophys. 2021, 42, 80. [Google Scholar] [CrossRef]
- Qi, W.; Xiong, Z.; Tang, H.; Lu, D.; Chen, B. Compact Near-Infrared Spectrometer for Quantitative Determination of Wood Composition. J. Appl. Spectrosc. 2021, 88, 461–467. [Google Scholar] [CrossRef]
- Liang, H.; Cao, J.; Tu, W.; Lin, X.; Zhang, Y. Nondestructive Determination of the Compressive Strength of Wood Using Near-Infrared Spectroscopy. Bioresources 2016, 11, 7205–7213. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Creten, S.; Firdaus, Y.; Agustin Flores Cuautle, J.J.; Kouyaté, M.; Van der Auweraer, M.; Glorieux, C. Fluorescence Spectra Shape Based Dynamic Thermometry. Appl. Phys. Lett. 2014, 104, 031902. [Google Scholar] [CrossRef]
- Munro, T.; Liu, L.; Ban, H.; Glorieux, C. Thermophysical Properties of Thin Fibers via Photothermal Quantum Dot Fluorescence Spectral Shape-Based Thermometry. Int. J. Heat Mass Transf. 2017, 112, 1090–1097. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhong, K.; Munro, T.; Alvarado, S.; Côte, R.; Creten, S.; Fron, E.; Ban, H.; Van der Auweraer, M.; Roozen, N.B.; et al. Wideband Fluorescence-Based Thermometry by Neural Network Recognition: Photothermal Application with 10 Ns Time Resolution. J. Appl. Phys. 2015, 118, 184906. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Song, Y.; Liu, W.; Lv, Z.; Yang, Y. Phosphor Thermometry at 5 KHz Rate Using a High-Speed Fiber-Optic Spectrometer. J. Appl. Phys. 2020, 127, 124501. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, Y.; Yan, G.; Li, S. Study on the Hyperspectral Polarized Reflection Characteristics of Oil Slicks on Sea Surfaces. Chin. Sci. Bull. 2011, 56, 1596–1602. [Google Scholar] [CrossRef] [Green Version]
- Bukin, O.; Proschenko, D.; Korovetskiy, D.; Chekhlenok, A.; Yurchik, V.; Bukin, I. Development of the Artificial Intelligence and Optical Sensing Methods for Oil Pollution Monitoring of the Sea by Drones. Appl. Sci. 2021, 11, 3642. [Google Scholar] [CrossRef]
- Picon, A.; Alvarez-Gila, A.; Arteche, J.A.; Lopez, G.A.; Vicente, A. A Probabilistic Model and Capturing Device for Remote Simultaneous Estimation of Spectral Emissivity and Temperature of Hot Emissive Materials. IEEE Access 2021, 9, 100513–100529. [Google Scholar] [CrossRef]
- Huang, Y.; Long, M.; Fan, H.; Gui, L.; Chen, D.; Duan, H. Quantifying the Effects of Combustion Gases’ Radiation on Surface Temperature Measurements Using Two-Color Pyrometry. Energy Fuels 2019, 33, 3610–3619. [Google Scholar] [CrossRef]
- Bouvry, B.; Cheymol, G.; Ramiandrisoa, L.; Javaudin, B.; Gallou, C.; Maskrot, H.; Horny, N.; Duvaut, T.; Destouches, C.; Ferry, L.; et al. Multispectral Pyrometry for Surface Temperature Measurement of Oxidized Zircaloy Claddings. Infrared Phys. Technol. 2017, 83, 78–87. [Google Scholar] [CrossRef]
- Xing, J.; Cui, S.; Qi, W.; Zhang, F.; Sun, X.; Sun, W. A Data Processing Algorithm for Multi-Wavelength Pyrometry-Which Does Not Need to Assume the Emissivity Model in Advance. Measurement 2015, 67, 92–98. [Google Scholar] [CrossRef]
- Yan, W.; Ya, Y.; Du, F.; Shao, H.; Zhao, P. Spectrometer-Based Line-of-Sight Temperature Measurements during Alkali-Pulverized Coal Combustion in a Power Station Boiler. Energies 2017, 10, 1375. [Google Scholar] [CrossRef] [Green Version]
- Fu, T.; Tan, P.; Pang, C.; Zhao, H.; Shen, Y. Fast Fiber-Optic Multi-Wavelength Pyrometer. Rev. Sci. Instrum. 2011, 82, 64902. [Google Scholar] [CrossRef] [PubMed]
- Hijazi, A.; Sachidanandan, S.; Singh, R.; Madhavan, V. A Calibrated Dual-Wavelength Infrared Thermometry Approach with Non-Greybody Compensation for Machining Temperature Measurements. Meas. Sci. Technol. 2011, 22, 25106. [Google Scholar] [CrossRef] [Green Version]
- Leonidas, E.; Ayvar-Soberanis, S.; Laalej, H.; Fitzpatrick, S.; Willmott, J.R. A Comparative Review of Thermocouple and Infrared Radiation Temperature Measurement Methods during the Machining of Metals. Sensors 2022, 22, 4693. [Google Scholar] [CrossRef]
- Neupane, S.; Jatana, G.S.; Lutz, T.P.; Partridge, W.P. Development of A Multi-Spectral Pyrometry Sensor for High-Speed Transient Surface-Temperature Measurements in Combustion-Relevant Harsh Environments. Sensors 2023, 23, 105. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Song, H.; Laney, S.R. A Fiber Optic Spectrometry System for Measuring Irradiance Distributions in Sea Ice Environments. J. Atmos. Ocean. Technol. 2014, 31, 2844–2857. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Song, H.; Chen, Y.; Laney, S.R. Correcting Temperature Dependence in Miniature Spectrometers Used in Cold Polar Environments. Appl. Opt. 2015, 54, 3162–3172. [Google Scholar] [CrossRef]
- Wang, H.; Nan, L.; Huang, H.; Yang, P.; Song, H.; Han, J.; Wu, Y.; Yan, T.; Yuan, Z.; Chen, Y. Adaptive Measurement Method for Miniature Spectrometers Used in Cold Environments. Appl. Opt. 2017, 56, 8029–8039. [Google Scholar] [CrossRef]
- Wang, N.; Shen, H.; Zhu, R. Constraint Optimization Algorithm for Spectral Emissivity Calculation in Multispectral Thermometry. Measurement 2021, 170, 108725. [Google Scholar] [CrossRef]
- Liang, J.; Dai, L.; Chen, S.; Gu, W.; Peng, B.; Jiang, N.; Song, W.; Xing, J. Generalized Inverse Matrix-Exterior Penalty Function (GIM-EPF) Algorithm for Data Processing of Multi-Wavelength Pyrometer (MWP). Opt. Express 2018, 26, 25706. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Zhang, K.; Xu, Y.; Yu, K.; Liu, Y. Data Processing Method for Simultaneous Estimation of Temperature and Emissivity in Multispectral Thermometry. Opt. Express 2022, 30, 35381. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Zhang, K.; Yu, K.; Liu, Y. Fast Emissivity Measuring Apparatus with Adjustable Focusing and Field Calibration. In IEEE Transactions on Instrumentation and Measurement; IEEE: Piscataway Township, NJ, USA, 2023. [Google Scholar] [CrossRef]
- Hay, B.; Hameury, J.; Fleurence, N.; Lacipiere, P.; Grelard, M.; Scoarnec, V.; Davee, G. New Facilities for the Measurements of High-Temperature Thermophysical Properties at LNE. Int. J. Thermophys. 2014, 35, 1712–1724. [Google Scholar] [CrossRef]
Ambient Temperature | Relative Error (%) | ||
---|---|---|---|
1200–1450 nm | 1450–1600 nm | 1601–2500 nm | |
15 °C | 4.54 | 1.49 | 0.28 |
25 °C | 6.02 | 2.01 | 0.38 |
30 °C | 15.33 | 3.97 | 0.67 |
35 °C | 17.20 | 5.06 | 0.80 |
Ambient Temperature | Relative Error (%) | ||
---|---|---|---|
1200–1450 nm | 1450–1600 nm | 1601–2500 nm | |
15 °C | 3.82 | 0.86 | 0.24 |
25 °C | 3.63 | 1.42 | 0.18 |
30 °C | 8.71 | 2.58 | 0.42 |
35 °C | 8.80 | 3.37 | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Zhang, K.; Yu, Y.; Yu, K.; Liu, Y. An Improved Method for Accurate Radiation Measurement Based on Dark Output Noise Drift Compensation. Sensors 2023, 23, 6157. https://doi.org/10.3390/s23136157
Zhao B, Zhang K, Yu Y, Yu K, Liu Y. An Improved Method for Accurate Radiation Measurement Based on Dark Output Noise Drift Compensation. Sensors. 2023; 23(13):6157. https://doi.org/10.3390/s23136157
Chicago/Turabian StyleZhao, Baolin, Kaihua Zhang, Yaxin Yu, Kun Yu, and Yufang Liu. 2023. "An Improved Method for Accurate Radiation Measurement Based on Dark Output Noise Drift Compensation" Sensors 23, no. 13: 6157. https://doi.org/10.3390/s23136157
APA StyleZhao, B., Zhang, K., Yu, Y., Yu, K., & Liu, Y. (2023). An Improved Method for Accurate Radiation Measurement Based on Dark Output Noise Drift Compensation. Sensors, 23(13), 6157. https://doi.org/10.3390/s23136157