New Electronic Tongue Sensor Array System for Accurate Liquor Beverage Classification
Abstract
:1. Introduction
2. Conceptual Framework
2.1. Electronic Tongues
2.2. Dimensionality Reduction
2.3. Multivariate Data Analysis
2.4. Classification Methods
2.4.1. Decision Trees
2.4.2. Random Forest
2.4.3. MLP Neural Network
2.4.4. Ada Boost
2.4.5. Naive Bayes
2.4.6. Quadratic Discriminant Analysis
3. Sabajon Classification Methodology
3.1. Experimental Setup
3.2. Data Acquisition System
3.3. Scaling
3.4. Unfolding Data
3.5. Dimensionality Reduction
3.6. Classification and Cross Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ICA | Independent Component Analysis |
LDA | Linear Discriminant Analysis |
SVD | Singular Value Decomposition |
PCA | Principal Component Analysis |
References
- Pozo, F.; Tibaduiza, D.A.; Vidal, Y. Sensors for Structural Health Monitoring and Condition Monitoring. Sensors 2021, 21, 1558. [Google Scholar] [CrossRef]
- Camacho-Olarte, J.; Burgos, D.A.T. Real Application For A Data Acquisition System from Sensors Based on Embedded Systems. Eng. Proc. 2020, 2, 25. [Google Scholar]
- Anaya, M.; Tibaduiza, D.; Pozo, F. Data driven methodology based on artificial immune systems for damage detection. In Proceedings of the 7th European Workshop on Structural Health Monitoring, EWSHM 2014-2nd European Conference of the Prognostics and Health Management (PHM) Society, Nantes, France, 8–11 July 2014. [Google Scholar]
- Tan, J.; Xu, J. Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artif. Intell. Agric. 2020, 4, 104–115. [Google Scholar] [CrossRef]
- Akyazi, T.; Goti, A.; Oyarbide, A.; Alberdi, E.; Bayon, F. A guide for the food industry to meet the future skills requirements emerging with industry 4.0. Foods 2020, 9, 492. [Google Scholar] [CrossRef] [Green Version]
- Peres, R.S.; Jia, X.; Lee, J.; Sun, K.; Colombo, A.W.; Barata, J. Industrial Artificial Intelligence in Industry 4.0-Systematic Review, Challenges and Outlook. IEEE Access 2020, 8, 220121–220139. [Google Scholar] [CrossRef]
- Inazumi, S.; Intui, S.; Jotisankasa, A.; Chaiprakaikeow, S.; Kojima, K. Artificial intelligence system for supporting soil classification. Results Eng. 2020, 8, 100188. [Google Scholar] [CrossRef]
- Dash, R.; Dash, D.K.; Biswal, G. Classification of crop based on macronutrients and weather data using machine learning techniques. Results Eng. 2021, 9, 100203. [Google Scholar] [CrossRef]
- Kim, E.; Dahiya, G.S.; Løset, S.; Skjetne, R. Can a computer see what an ice expert sees? Multilabel ice objects classification with convolutional neural networks. Results Eng. 2019, 4, 100036. [Google Scholar] [CrossRef]
- Leon-Medina, J.; Cardenas-Flechas, L.; Tibaduiza, D. A data-driven methodology for the classification of different liquids in artificial taste recognition applications with a pulse voltammetric electronic tongue. Int. J. Distrib. Sens. Netw. 2019, 15. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zou, G.; Liu, W.; Zhou, Z. Beer taste detection based on electronic tongue. Sens. Mater. 2020, 32, 2949–2958. [Google Scholar] [CrossRef]
- Wang, K.; Zhuang, H.; Bing, F.; Chen, D.; Feng, T.; Xu, Z. Evaluation of eight kinds of flavor enhancer of umami taste by an electronic tongue. Food Sci. Nutr. 2021, 9, 2095–2104. [Google Scholar] [CrossRef]
- Leon-Medina, J.X.; Anaya, M.; Tibaduiza, D.A. Yogurt classification using an electronic tongue system and machine learning techniques. Intell. Syst. Appl. 2022, 16, 200143. [Google Scholar] [CrossRef]
- Wang, M.; Luo, D.; Yang, Y.; Nikitina, M.A.; Zhang, X.; Xiao, X. NIR based wireless sensing approach for fruit monitoring. Results Eng. 2022, 14, 100403. [Google Scholar] [CrossRef]
- Ahmed, A.K.A.; Ibraheem, A.M.; Abd-Ellah, M.K. Forecasting of municipal solid waste multi-classification by using time-series deep learning depending on the living standard. Results Eng. 2022, 16, 100655. [Google Scholar] [CrossRef]
- Winquist, F.; Bjorklund, R.; Krantz-Rülcker, C.; Lundström, I.; Östergren, K.; Skoglund, T. An electronic tongue in the dairy industry. Sensors Actuators B Chem. 2005, 111–112, 299–304. [Google Scholar] [CrossRef]
- Leon-Medina, J.X. Desarrollo de un Sistema De Clasificación de Sustancias Basado en un Arreglo de Sensores Tipo Lengua Electrónica. Ph.D. Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2021. Available online: https://repositorio.unal.edu.co/handle/unal/79962 (accessed on 10 May 2023).
- Leon-Medina, J.X.; Anaya, M.; Pozo, F.; Tibaduiza, D. Nonlinear feature extraction through manifold learning in an electronic tongue classification task. Sensors 2020, 20, 4834. [Google Scholar] [CrossRef] [PubMed]
- Krantz-Rülcker, C.; Stenberg, M.; Winquist, F.; Lundström, I. Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition: A review. Anal. Chim. Acta 2001, 426, 217–226. [Google Scholar] [CrossRef]
- Leon-Medina, J.X.; Vejar, M.A.; Tibaduiza, D.A. Signal Processing and Pattern Recognition in Electronic Tongues: A Review. pp. 84–108. Available online: https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-1839-7.ch004 (accessed on 10 May 2023).
- Woertz, K.; Tissen, C.; Kleinebudde, P.; Breitkreutz, J. Taste sensing systems (electronic tongues) for pharmaceutical applications. Int. J. Pharm. 2011, 417, 256–271. [Google Scholar] [CrossRef]
- Breijo, E.G.; Pinatti, C.O.; Peris, R.M.; Fillol, M.A.; Martínez-Máñez, R.; Camino, J.S. TNT detection using a voltammetric electronic tongue based on neural networks. Sens. Actuators A Phys. 2013, 192, 1–8. [Google Scholar] [CrossRef]
- Valente, N.I.; Rudnitskaya, A.; Oliveira, J.A.; Gaspar, E.M.; Gomes, M.T.S. Cheeses made from raw and pasteurized cow’s milk analysed by an electronic nose and an electronic tongue. Sensors 2018, 18, 2415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, Y.H.; Ismail, I.; Joo, S.T. Identification of Umami Taste in Sous-vide Beef by Chemical Analyses, Equivalent Umami Concentration, and Electronic Tongue System. Foods 2020, 9, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guedes, M.D.V.; Marques, M.S.; Guedes, P.C.; Contri, R.V.; Guerreiro, I.C.K. The use of electronic tongue and sensory panel on taste evaluation of pediatric medicines: A systematic review. Pharm. Dev. Technol. 2021, 26, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, K.; Tudu, B.; Bandyopadhyay, R.; Chatterjee, A. Identification of monofloral honey using voltammetric electronic tongue. J. Food Eng. 2013, 117, 205–210. [Google Scholar] [CrossRef]
- Arrieta, A.A.; Núñez, Y.E.; Mendoza, J.M. Mini-electronic tongue used to discriminate between coffee samples of different geographical origin. Int. J. Technol. 2020, 11, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Leon-Medina, J.X.; Tibaduiza, D.A.; Burgos, J.C.; Cuenca, M.; Vasquez, D. Classification of As, Pb and Cd Heavy Metal Ions Using Square Wave Voltammetry, Dimensionality Reduction and Machine Learning. IEEE Access 2022, 10, 7684–7694. [Google Scholar] [CrossRef]
- Leon-Medina, J.X.; Acosta-Opayome, D.; Fuenmayor, C.A.; Zuluaga-Domínguez, C.M.; Anaya, M.; Tibaduiza, D.A. Intelligent electronic tongue system for the classification of genuine and false honeys. Int. J. Food Prop. 2023, 26, 327–343. [Google Scholar] [CrossRef]
- Destarianto, P.; Riskiawan, H.Y.; Agustianto, K.; Kautsar, S. Developing food sensory test system with preference test (Hedonic and Hedonic quality) wheat bread case study. In Proceedings of the 2017 International Conference on Sustainable Information Engineering and Technology, Malang, Indonesia, 24–25 November 2017. [Google Scholar] [CrossRef]
- Puentes, G.A. Estudio de mercados para la feijoa (Acca Sellowiana Berg) en fresco producida en el municipio de Tibasosa (Boyacá) Colombia. Rev. Mex. Agronegocios 2016, 38, 271–282. [Google Scholar]
- Leon-Medina, J.X.; Pineda-Munoz, W.A.; Burgos, D.A.T. Joint Distribution Adaptation for Drift Correction in Electronic Nose Type Sensor Arrays. IEEE Access 2020, 8, 134413–134421. [Google Scholar] [CrossRef]
- Tahara, Y.; Toko, K. Electronic Tongues—A Review. IEEE Sens. J. 2013, 13, 3001–3011. [Google Scholar] [CrossRef]
- del Valle, M. Sensor Arrays and Electronic Tongue Systems. Int. J. Electrochem. 2012, 2012, 986025. [Google Scholar] [CrossRef] [Green Version]
- Burgos, D.A.T.; Vejar, M.A.; Pozo, F. (Eds.) Pattern Recognition Applications in Engineering; IGI Global: Pennsylvania, PA, USA, 2020. [Google Scholar] [CrossRef]
- Reddy, G.T.; Reddy, M.P.K.; Lakshmanna, K.; Kaluri, R.; Rajput, D.S.; Srivastava, G.; Baker, T. Analysis of Dimensionality Reduction Techniques on Big Data. IEEE Access 2020, 8, 54776–54788. [Google Scholar] [CrossRef]
- Gewers, F.L.; Ferreira, G.R.; Arruda, H.F.D.; Silva, F.N.; Comin, C.H.; Amancio, D.R.; Costa, L.D.F. Principal component analysis: A natural approach to data exploration. ACM Comput. Surv. 2021, 54, 1–34. [Google Scholar] [CrossRef]
- Choi, H.; Choi, S. Robust kernel Isomap. Pattern Recognit. 2007, 40, 853–862. [Google Scholar] [CrossRef]
- Lathauwer, L.D.; Moor, B.D.; Vandewalle, J. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 2000, 21, 1253–1278. [Google Scholar] [CrossRef] [Green Version]
- Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323–2326. [Google Scholar] [CrossRef] [Green Version]
- Tibaduiza, D.A.; Mujica, L.E.; Anaya, M.; Rodellar, J.; Guemes, A. Principal Component Analysis vs. Independent Component Analysis for Damage Detection. In Proceedings of the 6th European Workshop on Structural Health Monitoring, Dresden, Germany, 3–6 July 2012. [Google Scholar]
- Ayesha, S.; Hanif, M.K.; Talib, R. Overview and comparative study of dimensionality reduction techniques for high dimensional data. Inf. Fusion 2020, 59, 44–58. [Google Scholar] [CrossRef]
- Quinlan, J.R. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.Y.; Lu, Y. Decision tree methods: Applications for classification and prediction. Shanghai Arch. Psychiatry 2015, 27, 130. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, P.M.; Tatnall, A.R. Introduction neural networks in remote sensing. Int. J. Remote Sens. 1997, 18, 699–709. [Google Scholar] [CrossRef]
- Kumaravel, A.; Udhayakumarapandian, D. Consruction of meta classifiers for apple scab infections. Int. J. Pharma Bio Sci. 2013, 4, B-1207–B-1213. [Google Scholar]
- Trigoso, T.C.; Cruz, J.O.; Minano, H.A.; Silupu, W.C. Application of Machine Learning in the Discrimination of Citrus Fruit Juices: Uses of Dielectric Spectroscopy. In Proceedings of the 2020 IEEE Engineering International Research Conference (EIRCON), Lima, Peru, 21–23 October 2020. [Google Scholar] [CrossRef]
- Palmsens. Palmsens 4 Brochure. 2023. Available online: https://www.palmsens.com/app/uploads/2022/09/PalmSens4-Brochure.pdf (accessed on 10 May 2023).
- Leon-Medina, J.X.; Parés, N.; Anaya, M.; Tibaduiza, D.A.; Pozo, F. Data classification methodology for electronic noses using uniform manifold approximation and projection and extreme learning machine. Mathematics 2022, 10, 29. [Google Scholar] [CrossRef]
ID | Working Electrode Material |
---|---|
S1 | Gold |
S2 | Platinum |
S3 | Silver |
S4 | Graphite |
S5 | Platinum |
S6 | Gold-Platinum Alloy |
S7 | Silver |
S8 | Platinum |
ID | Sabajon | Number of Experiments |
---|---|---|
1 | Traditional | 20 |
2 | Brandy | 20 |
3 | Coffee | 20 |
4 | Feijoa | 20 |
5 | Peach | 20 |
Decision Tree | Random Forest | MLP Neural Network | AdaBoost | Naive Bayes | Quadratic Discriminant Analysis | |
---|---|---|---|---|---|---|
LTSA | 0.98 | 0.98 | 1 | 0.38 | 1 | 1 |
LLE | 0.99 | 0.99 | 1 | 0.99 | 0.99 | 1 |
Hessian LLE | 0.98 | 1 | 1 | 0.99 | 0.97 | 1 |
Modified LLE | 1 | 0.99 | 1 | 0.99 | 1 | 1 |
Isomap | 1 | 0.99 | 1 | 0.59 | 0.98 | 0.98 |
Laplacian Eigenmaps | 1 | 1 | 1 | 1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leon-Medina, J.X.; Anaya, M.; Tibaduiza, D.A. New Electronic Tongue Sensor Array System for Accurate Liquor Beverage Classification. Sensors 2023, 23, 6178. https://doi.org/10.3390/s23136178
Leon-Medina JX, Anaya M, Tibaduiza DA. New Electronic Tongue Sensor Array System for Accurate Liquor Beverage Classification. Sensors. 2023; 23(13):6178. https://doi.org/10.3390/s23136178
Chicago/Turabian StyleLeon-Medina, Jersson X., Maribel Anaya, and Diego A. Tibaduiza. 2023. "New Electronic Tongue Sensor Array System for Accurate Liquor Beverage Classification" Sensors 23, no. 13: 6178. https://doi.org/10.3390/s23136178
APA StyleLeon-Medina, J. X., Anaya, M., & Tibaduiza, D. A. (2023). New Electronic Tongue Sensor Array System for Accurate Liquor Beverage Classification. Sensors, 23(13), 6178. https://doi.org/10.3390/s23136178