Reflectance Measurements from Aerial and Proximal Sensors Provide Similar Precision in Predicting the Rice Yield Response to Mid-Season N Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Management
2.3. Canopy Reflectance Measurements
2.3.1. Aerial and Proximal Sensors
2.3.2. Calculating the Sufficiency Index
2.4. Data Analysis
3. Results
3.1. Crop Response to N Fertilizer
3.2. Canopy Reflectance and Linear Relationships between Pre-Plant N Rate and SI
3.3. Relationship between SI and Grain Yield Response to Top-Dress
3.4. Estimating Crop Yield Response to Top-Dress N Fertilizer via SI
4. Discussion
4.1. Grain Yields and Response to Pre-Plant N Fertilizer
4.2. Informing Top-Dress N Management with Aerial and Proximal Sensors
4.3. Comparison between Aerial NDREUAS and Proximal NDVIGS
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ladha, J.K.; Jat, M.L.; Stirling, C.M.; Chakraborty, D.; Pradhan, P.; Krupnik, T.J.; Sapkota, T.B.; Pathak, H.; Rana, D.S.; Tesfaye, K.; et al. Achieving the sustainable development goals in agriculture: The crucial role of nitrogen in cereal-based systems. Adv. Agron. 2020, 163, 39–116. [Google Scholar]
- Dzurella, K.N.; Pettygrove, G.S.; Fryjoff-Hung, A.; Hollander, A.; Harter, T. Potential to assess nitrate leaching vulnerability of irrigated cropland. J. Soil Water Conserv. 2015, 70, 63–72. [Google Scholar] [CrossRef]
- Almaraz, M.; Bai, E.; Wang, C.; Trousdell, J.; Conley, S.; Faloona, I.; Houlton, B.Z. Agriculture is a major source of NOx pollution in California. Sci. Adv. 2018, 4, eaao3477. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.; Sutula, M.; Bouma-Gregson, K.; Van Dyke, M. California Water Boards’ Framework and Strategy for Freshwater Harmful Algal Bloom Monitoring: Executive Synthesis; Technical Report 1141.B; Southern California Coastal Water Research Project: Costa Mesa, CA, USA, 2021. [Google Scholar]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Linquist, B.A.; Hill, J.E.; Mutters, R.G.; Greer, C.A.; Hartley, C.; Ruark, M.D.; van Kessel, C. Assessing the Necessity of Surface-Applied Preplant Nitrogen Fertilizer in Rice Systems. Agron. J. 2009, 101, 906–915. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.F. Rice Nutrient Management in California; University of California Agriculture and Natural Resources: Richmond, CA, USA, 2010; Volume 3516. [Google Scholar]
- Perry, H.; Carrijo, D.; Linquist, B. Single midseason drainage events decrease global warming potential without sacrificing grain yield in flooded rice systems. Field Crops Res. 2022, 276, 108312. [Google Scholar] [CrossRef]
- Linquist, B.; Sengxua, P. Efficient and flexible management of nitrogen for rainfed lowland rice. Nutr. Cycl. Agroecosyst. 2003, 67, 107–115. [Google Scholar] [CrossRef]
- Saberioon, M.M.; Amin, M.S.M.; Gholizadeh, A.; Ezri, M.H. A Review of Optical Methods for Assessing Nitrogen Contents During Rice Growth. Appl. Eng. Agric. 2014, 30, 657–669. [Google Scholar]
- Bijay, S.; Ali, A.M. Using Hand-Held Chlorophyll Meters and Canopy Reflectance Sensors for Fertilizer Nitrogen Management in Cereals in Small Farms in Developing Countries. Sensors 2020, 20, 1127. [Google Scholar] [CrossRef] [Green Version]
- Hussain, F.; Bronson, K.F.; Yadvinder, S.; Bijay, S.; Peng, S. Use of chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia. Agron. J. 2000, 92, 875–879. [Google Scholar] [CrossRef]
- Singh, B.; Gupta, R.K.; Singh, Y.; Gupta, S.K.; Singh, J.; Bains, J.S.; Vashishta, M. Need-Based Nitrogen Management Using Leaf Color Chart in Wet Direct-Seeded Rice in Northwestern India. J. New Seeds 2006, 8, 35–47. [Google Scholar] [CrossRef]
- Dobermann, A.; Fairhurst, T. Rice: Nutrient Disorders & Nutrient Management; International Rice Research Institute: Manila, Philippines, 2000. [Google Scholar]
- Colaco, A.F.; Bramley, R.G.V. Do crop sensors promote improved nitrogen management in grain crops? Field Crops Res. 2018, 218, 126–140. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef] [Green Version]
- Gnyp, M.L.; Miao, Y.X.; Yuan, F.; Ustin, S.L.; Yu, K.; Yao, Y.K.; Huang, S.Y.; Bareth, G. Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages. Field Crops Res. 2014, 155, 42–55. [Google Scholar] [CrossRef]
- Yao, Y.K.; Miao, Y.X.; Cao, Q.; Wang, H.Y.; Gnyp, M.L.; Bareth, G.; Khosla, R.; Yang, W.; Liu, F.Y.; Liu, C. In-Season Estimation of Rice Nitrogen Status With an Active Crop Canopy Sensor. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4403–4413. [Google Scholar] [CrossRef]
- Rehman, T.H.; Reis, A.F.B.; Akbar, N.; Linquist, B.A. Use of Normalized Difference Vegetation Index to Assess N Status and Predict Grain Yield in Rice. Agron. J. 2019, 111, 2889–2898. [Google Scholar] [CrossRef]
- Zhang, K.; Ge, X.; Shen, P.; Li, W.; Liu, X.; Cao, Q.; Zhu, Y.; Cao, W.; Tian, Y. Predicting rice grain yield based on dynamic changes in vegetation indexes during early to mid-growth stages. Remote Sens. 2019, 11, 387. [Google Scholar] [CrossRef] [Green Version]
- Harrell, D.; Tubana, B.; Walker, T.; Phillips, S. Estimating rice grain yield potential using normalized difference vegetation index. Agron. J. 2011, 103, 1717–1723. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterization. Photogramm. Eng. Remote Sens. 2002, 68, 607–621. [Google Scholar]
- Rehman, T.H.; Lundy, M.E.; Linquist, B.A. Comparative Sensitivity of Vegetation Indices Measured via Proximal and Aerial Sensors for Assessing N Status and Predicting Grain Yield in Rice Cropping Systems. Remote Sens. 2022, 14, 2770. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.; Gitelson, A.; Peng, Y.; Vina, A.; Arkebauer, T.; Rundquist, D. Green Leaf Area Index Estimation in Maize and Soybean: Combining Vegetation Indices to Achieve Maximal Sensitivity. Agron. J. 2012, 104, 1336–1347. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.J.; Schepers, J.S.; Shapiro, C.A.; Arneson, N.J.; Eskridge, K.M.; Oliveira, M.C.; Giesler, L.J. Characterizing soybean vigor and productivity using multiple crop canopy sensor readings. Field Crops Res. 2018, 216, 22–31. [Google Scholar] [CrossRef]
- Dunn, B.; Dunn, T.; Hume, I.; Orchard, B.; Dehaan, R.; Robson, A. Remote Sensing PI Nitrogen Uptake in Rice. IREC Farmers’ Newsletter No. 195. 2016. Available online: https://www.researchgate.net/publication/309678601_Remote_sensing_PI_nitrogen_uptake_in_rice (accessed on 3 February 2022).
- Wang, L.; Chen, S.S.; Li, D.; Wang, C.Y.; Jiang, H.; Zheng, Q.; Peng, Z.P. Estimation of Paddy Rice Nitrogen Content and Accumulation Both at Leaf and Plant Levels from UAV Hyperspectral Imagery. Remote Sens. 2021, 13, 2956. [Google Scholar] [CrossRef]
- Blackmer, T.M.; Schepers, J.S. Use of a Chlorophyll Meter to Monitor Nitrogen Status and Schedule Fertigation for Corn. J. Prod. Agric. 1995, 8, 56–60. [Google Scholar] [CrossRef]
- Holland, K.H.; Schepers, J.S. Derivation of a Variable Rate Nitrogen Application Model for In-Season Fertilization of Corn. Agron. J. 2010, 102, 1415–1424. [Google Scholar] [CrossRef]
- Clay, D.E.; Kharel, T.P.; Reese, C.; Beck, D.; Carlson, C.G.; Clay, S.A.; Reicks, G. Winter Wheat Crop Reflectance and Nitrogen Sufficiency Index Values are Influenced by Nitrogen and Water Stress. Agron. J. 2012, 104, 1612–1617. [Google Scholar] [CrossRef] [Green Version]
- Thompson, L.J.; Ferguson, R.B.; Kitchen, N.; Frazen, D.W.; Mamo, M.; Yang, H.; Schepers, J.S. Model and Sensor-Based Recommendation Approaches for In-Season Nitrogen Management in Corn. Agron. J. 2015, 107, 2020–2030. [Google Scholar] [CrossRef] [Green Version]
- Cordero, E.; Moretti, B.; Miniotti, E.F.; Tenni, D.; Beltarre, G.; Romani, M.; Sacco, D. Fertilisation strategy and ground sensor measurements to optimise rice yield. Eur. J. Agron. 2018, 99, 177–185. [Google Scholar] [CrossRef]
- Lu, J.; Miao, Y.; Shi, W.; Li, J.; Hu, X.; Chen, Z.; Wang, X.; Kusnierek, K. Developing a proximal active canopy sensor-based precision nitrogen management strategy for high-yielding rice. Remote Sens. 2020, 12, 1440. [Google Scholar] [CrossRef]
- Raun, W.R.; Solie, J.B.; Johnson, G.V.; Stone, M.L.; Mullen, R.W.; Freeman, K.W.; Thomason, W.E.; Lukina, E.V. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron. J. 2002, 94, 815–820. [Google Scholar] [CrossRef] [Green Version]
- Raun, W.R.; Solie, J.B.; Stone, M.L.; Martin, K.L.; Freeman, K.W.; Mullen, R.W.; Zhang, H.; Schepers, J.S.; Johnson, G.V. Optical sensor-based algorithm for crop nitrogen fertilization. Commun. Soil Sci. Plant Anal. 2005, 36, 2759–2781. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.M.; Thind, H.S.; Varinderpal, S.; Bijay, S. A framework for refining nitrogen management in dry direct-seeded rice using GreenSeeker (TM) optical sensor. Comput. Electron. Agric. 2015, 110, 114–120. [Google Scholar] [CrossRef]
- Bijay, S.; Varinderpal, S.; Purba, J.; Sharma, R.K.; Jat, M.L.; Yadvinder, S.; Thind, H.S.; Gupta, R.K.; Chaudhary, O.P.; Chandna, P.; et al. Site-specific fertilizer nitrogen management in irrigated transplanted rice (Oryza sativa) using an optical sensor. Precis. Agric. 2015, 16, 455–475. [Google Scholar] [CrossRef]
- Xue, L.H.; Li, G.H.; Qin, X.; Yang, L.Z.; Zhang, H.L. Topdressing nitrogen recommendation for early rice with an active sensor in south China. Precis. Agric. 2014, 15, 95–110. [Google Scholar] [CrossRef]
- Yao, Y.K.; Miao, Y.X.; Huang, S.Y.; Gao, L.; Ma, X.B.; Zhao, G.M.; Jiang, R.F.; Chen, X.P.; Zhang, F.S.; Yu, K.; et al. Active canopy sensor-based precision N management strategy for rice. Agron. Sustain. Dev. 2012, 32, 925–933. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, W.; Krienke, B.; Cao, Q.; Zhu, Y.; Cao, W.; Liu, X. In-season variable rate nitrogen recommendation for wheat precision production supported by fixed-wing UAV imagery. Precis. Agric. 2022, 23, 830–853. [Google Scholar] [CrossRef]
- Thompson, L.J.; Puntel, L.A. Transforming unmanned aerial vehicle (UAV) and multispectral sensor into a practical decision support system for precision nitrogen management in corn. Remote Sens. 2020, 12, 1597. [Google Scholar] [CrossRef]
- CIMIS. California Irrigation Management Information System. Available online: http://www.cimis.water.ca.gov/WSNReportCriteria.aspx (accessed on 1 September 2020).
- Hill, J.E.; Williams, J.F.; Mutters, R.G.; Greer, C.A. The California rice cropping system: Agronomic and natural resource issues for long-term sustainability. Paddy Water Environ. 2006, 4, 13–19. [Google Scholar] [CrossRef]
- Dunn, T.; Dunn, B. Identifying Panicle Initiation in Rice; Primefact 1278; Department of Primary Industries: New South Wales, Australia, 2018.
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ 1974, 351, 309. [Google Scholar]
- Haghighattalab, A.; González Pérez, L.; Mondal, S.; Singh, D.; Schinstock, D.; Rutkoski, J.; Ortiz-Monasterio, I.; Singh, R.P.; Goodin, D.; Poland, J. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant Methods 2016, 12, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelsen, T.S.; Lundy, M.E. Canopy reflectance informs in-season malting barley nitrogen management: An ex-ante classification approach. Agron. J. 2020, 112, 4705–4722. [Google Scholar] [CrossRef]
- Holland, K.H.; Schepers, J.S. Use of a virtual-reference concept to interpret active crop canopy sensor data. Precis. Agric. 2013, 14, 71–85. [Google Scholar] [CrossRef]
- R-Core-Team. R: A Language And Environment For Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Pinheiro, J.; Bates, D.; Team, R.C. Nlme: Linear and Nonlinear Mixed Effects Models; R Package Version 3.1-157. 2022. Available online: https://cran.r-project.org/web/packages/nlme/nlme.pdf (accessed on 1 March 2022).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Bartoń, K. MuMIn: Multi-Model Inference; R Package Version 1.46.0. 2022. Available online: https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf (accessed on 1 March 2022).
- Lenth, R.V. Emmeans: Estimated Marginal Means, aka Least-Squares Means; R Package Version 1.7.5. 2022. Available online: https://cran.r-project.org/web/packages/emmeans/emmeans.pdf (accessed on 1 March 2022).
- Espe, M.B.; Yang, H.S.; Cassman, K.G.; Guilpart, N.; Sharifi, H.; Linquist, B.A. Estimating yield potential in temperate high-yielding, direct-seeded US rice production systems. Field Crops Res. 2016, 193, 123–132. [Google Scholar] [CrossRef] [Green Version]
- van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield gap analysis with local to global relevance—A review. Field Crops Res. 2013, 143, 4–17. [Google Scholar] [CrossRef] [Green Version]
- De Datta, S.K. Principles and Practices of Rice Production; International Rice Research Institute: Manila, Philippines, 1981. [Google Scholar]
- Dunn, B.W.; Dunn, T.S.; Beecher, H.G. Nitrogen timing and rate effects on growth and grain yield of delayed permanent-water rice in south-eastern Australia. Crop Pasture Sci. 2014, 65, 878–887. [Google Scholar] [CrossRef]
- Dunn, B.W.; Dunn, T.S.; Orchard, B.A. Nitrogen rate and timing effects on growth and yield of drill-sown rice. Crop Pasture Sci. 2016, 67, 1149–1157. [Google Scholar] [CrossRef]
- Hardke, J.T. Arkansas Rice Production Handbook; University of Arkansas Division of Agriculture Cooperative Extension Service: Little Rock, AR, USA, 2021. [Google Scholar]
- Dunn, B.; Fowler, J.; Garnett, L.; Groat, M.; Mauger, T.; North, S.; Oli, P.; Plunkett, G.; Smith, A.; Stevens, M. Rice Growing Guide; Troldahl, D., Ed.; Department of Primary Industries: Yanco, NSW, Australia, 2018.
- UCCE. Sample Costs to Produce Rice; Department of Agricultural and Resource Economics, UC Davis: Sacramento Valley, CA, USA, 2021. [Google Scholar]
- Duan, T.; Chapman, S.C.; Guo, Y.; Zheng, B. Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle. Field Crops Res. 2017, 210, 71–80. [Google Scholar] [CrossRef]
- Zheng, H.B.; Cheng, T.; Li, D.; Yao, X.; Tian, Y.C.; Cao, W.X.; Zhu, Y. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice. Front. Plant Sci. 2018, 9, 936. [Google Scholar] [CrossRef]
- Sumner, Z.; Varco, J.J.; Dhillon, J.S.; Fox, A.A.A.; Czarnecki, J.; Henry, W.B. Ground versus aerial canopy reflectance of corn: Red-edge and non-red edge vegetation indices. Agron. J. 2021, 113, 2782–2797. [Google Scholar] [CrossRef]
Vegetation Index | Sensor Type | Year | Sensor | Light Source | Spectral Band | Central Wavelength (nm) | Bandwidth † (nm) | Formula | Reference |
---|---|---|---|---|---|---|---|---|---|
NDRE | Aerial | 2017 | SlantRange 3P | Passive | Red-Edge | 710 | 20 | [45] | |
Near Infrared | 850 | 100 | |||||||
2019 | MicaSense Red Edge-M | Passive | Red-Edge | 717 | 10 | ||||
Near Infrared | 840 | 40 | |||||||
NDVI | Proximal | Both | GreenSeeker | Active | Red | 670 | 10 | [46] | |
Near Infrared | 780 | 10 |
Mobile Application | Flight Parameters | Computer Software | |||||
---|---|---|---|---|---|---|---|
Year | Flight Mission Planning | Image Overlap † (%) | Flight Altitude § (meters) | Image Processing | Orthomosaic Spatial Resolution ‡ (cm pixel−1) | Reflectance Value Extraction | Reference |
2017 | Drone Deploy | 55 | 117 | SlantView | 4.8 | SlantView | |
2019 | Pix4D Capture | 85 | 50 | Pix4D | 3.5 | QGIS | [47,48] |
NDREUAS | NDVIGS | |
---|---|---|
Number of Site-Years | 6 | 6 |
Number of Observations | 336 | 336 |
Range of SI | 0.52–1.03 | 0.25–1.05 |
R2 | ||
Fixed-Effects | 0.50 | 0.44 |
Random Effects | 0.24 | 0.30 |
Entire Model | 0.74 | 0.74 |
Slope (Mg ha−1) † | −0.37 per 0.1 SI | −0.29 per 0.1 SI |
Mean Model Standard Error (Mg ha−1) § | ±0.15 | ±0.19 |
Positive Yield Response (Response > 0.0 Mg ha−1) | |||||
---|---|---|---|---|---|
NDREUAS | NDVIGS | ||||
Probability (%) | Model-Estimated Response (Mg ha−1) | Corresponding SI | Probability (%) | Model-Estimated Response (Mg ha−1) | Corresponding SI |
69 | 0.06 (±0.13) | 1.00 | 73 | 0.08 (±0.14) | 1.00 |
80 | 0.11 (±0.12) | 0.99 | 80 | 0.12 (±0.13) | 0.99 |
85 | 0.12 (±0.12) | 0.98 | 85 | 0.14 (±0.13) | 0.98 |
90 | 0.15 (±0.12) | 0.98 | 90 | 0.16 (±0.13) | 0.97 |
95 | 0.19 (±0.11) | 0.97 | 95 | 0.21 (±0.12) | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, T.H.; Lundy, M.E.; Reis, A.F.d.B.; Akbar, N.; Linquist, B.A. Reflectance Measurements from Aerial and Proximal Sensors Provide Similar Precision in Predicting the Rice Yield Response to Mid-Season N Applications. Sensors 2023, 23, 6218. https://doi.org/10.3390/s23136218
Rehman TH, Lundy ME, Reis AFdB, Akbar N, Linquist BA. Reflectance Measurements from Aerial and Proximal Sensors Provide Similar Precision in Predicting the Rice Yield Response to Mid-Season N Applications. Sensors. 2023; 23(13):6218. https://doi.org/10.3390/s23136218
Chicago/Turabian StyleRehman, Telha H., Mark E. Lundy, Andre Froes de Borja Reis, Nadeem Akbar, and Bruce A. Linquist. 2023. "Reflectance Measurements from Aerial and Proximal Sensors Provide Similar Precision in Predicting the Rice Yield Response to Mid-Season N Applications" Sensors 23, no. 13: 6218. https://doi.org/10.3390/s23136218
APA StyleRehman, T. H., Lundy, M. E., Reis, A. F. d. B., Akbar, N., & Linquist, B. A. (2023). Reflectance Measurements from Aerial and Proximal Sensors Provide Similar Precision in Predicting the Rice Yield Response to Mid-Season N Applications. Sensors, 23(13), 6218. https://doi.org/10.3390/s23136218