New Systolic Array Algorithms and VLSI Architectures for 1-D MDST †
Abstract
:1. Introduction
2. Systolic Array Algorithms for the Computation of 1D MDST
2.1. A Systolic Array Algorithm for the Computation of 1D MDST [31]
2.2. An Improvement of the Proposed Algorithm for the Computation of 1D MDST
3. Systolic Array Architectures for 1D MDST
3.1. The VLSI Architecture for the Algorithm of Section 2.1
3.2. The VLSI Architecture for the New Algorithm of Section 2.2
4. Discussion
5. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aouedi, O.; Piamrat, K.; Parrein, B. Intelligent Traffic Management in Next-Generation Networks. Future Internet 2022, 14, 44. [Google Scholar] [CrossRef]
- Klink, J. A Method of Codec Comparison and Selection for Good Quality Video Transmission over Limited-Bandwidth Networks. Sensors 2021, 21, 4589. [Google Scholar] [CrossRef]
- Tanseer, I.; Kanwal, N.; Asghar, M.N.; Iqbal, A.; Tanseer, F.; Fleury, M. Real-Time, Content-Based Communication Load Reduction in the Internet of Multimedia Things. Appl. Sci. 2020, 10, 1152. [Google Scholar] [CrossRef] [Green Version]
- Zikria, Y.B.; Afzal, M.K.; Kim, S.W. Internet of Multimedia Things (IoMT): Opportunities, Challenges and Solutions. Sensors 2020, 20, 2334. [Google Scholar] [CrossRef] [Green Version]
- Princen, J.; Bradley, A. Analysis/Synthesis Filter Bank Design Based on Time Domain Aliasing Cancellation. IEEE Trans. Acoust. Speech Signal Process. 1986, 34, 1153–1161. [Google Scholar] [CrossRef] [Green Version]
- Malvar, H.S. Lapped Transforms for Efficient Transform/Subband Coding. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 969–978. [Google Scholar] [CrossRef]
- Chen, C.-H.; Liu, B.-D.; Yang, J.-F. Recursive Architectures for Realizing Modified Discrete Cosine Transform and Its Inverse. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 2003, 50, 38–45. [Google Scholar] [CrossRef]
- Dai, X.; Wagh, M.D. Fast Algorithm for Modulated Complex Lapped Transform. IEEE Signal Process. Lett. 2009, 16, 30–33. [Google Scholar] [CrossRef] [Green Version]
- Lei, S.-F.; Lai, S.-C.; Cheng, P.-Y.; Luo, C.-H. Low Complexity and Fast Computation for Recursive MDCT and IMDCT Algorithms. IEEE Trans. Circuits Syst. II Express Briefs 2010, 57, 571–575. [Google Scholar] [CrossRef]
- Lai, S.-C.; Yeh, Y.-P.; Tseng, W.-C.; Lei, S.-F. Low-Cost and High-Accuracy Design of Fast Recursive MDCT/MDST/IMDCT/IMDST Algorithms and Their Realization. IEEE Trans. Circuits Syst. II Express Briefs 2012, 59, 65–69. [Google Scholar] [CrossRef]
- Britanak, V.; Rao, K.R. An Efficient Implementation of the Forward and Inverse MDCT in MPEG Audio Coding. IEEE Signal Process. Lett. 2001, 8, 48–51. [Google Scholar] [CrossRef]
- Lee, S.-W. Improved Algorithm for Efficient Computation of the Forward and Backward MDCT in MPEG Audio Coder. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 2001, 48, 990–994. [Google Scholar] [CrossRef]
- Nikolajevic, V.; Fettweis, G. Improved Implementation of MDCT in MP3 Audio Coding. In Proceedings of the APCC/MDMC’04. The 2004 Joint Conference of the 10th Asia-Pacific Conference on Communications and the 5th International Symposium on Multi-Dimensional Mobile Communications Proceeding, Beijing, China, 29 August–1 September 2004; Volume 1, pp. 309–312. [Google Scholar]
- Britanak, V. New Universal Rotation-Based Fast Computational Structures for an Efficient Implementation of the DCT-IV/DST-IV and Analysis/Synthesis MDCT/MDST Filter Banks. Signal Process. 2009, 89, 2213–2232. [Google Scholar] [CrossRef]
- Pan, C.; Lv, Z.; Hua, X.; Li, H. The Algorithm and Structure for Digital Normalized Cross-Correlation by Using First-Order Moment. Sensors 2020, 20, 1353. [Google Scholar] [CrossRef] [Green Version]
- Gookyi, D.A.N.; Lee, E.; Kim, K.; Jang, S.-J.; Lee, S.-S. Deep Learning Accelerators’ Configuration Space Exploration Effect on Performance and Resource Utilization: A Gemmini Case Study. Sensors 2023, 23, 2380. [Google Scholar] [CrossRef]
- Adiono, T.; Meliolla, G.; Setiawan, E.; Harimurti, S. Design of Neural Network Architecture Using Systolic Array Implemented in Verilog Code. In Proceedings of the 2018 International Symposium on Electronics and Smart Devices (ISESD), Bandung, Indonesia, 23–24 October 2018; pp. 1–4. [Google Scholar]
- Bagavathi, C.; Saraniya, O. Chapter 13—Evolutionary Mapping Techniques for Systolic Computing System. In Deep Learning and Parallel Computing Environment for Bioengineering Systems; Sangaiah, A.K., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 207–223. ISBN 978-0-12-816718-2. [Google Scholar]
- Zunin, V.V.; Romanova, I.I. Parameterized Computing Module Generator Based on a Systolic Array. In Proceedings of the 2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT), Bali, Indonesia, 28–30 July 2022; pp. 217–220. [Google Scholar]
- Lee, J.; Jeong, D.; Lee, S.; Lee, M.; Lee, W.; Jung, Y. FPGA Implementation of the Chirp-Scaling Algorithm for Real-Time Synthetic Aperture Radar Imaging. Sensors 2023, 23, 959. [Google Scholar] [CrossRef]
- White, S.A. Applications of Distributed Arithmetic to Digital Signal Processing: A Tutorial Review. IEEE ASSP Mag. 1989, 6, 4–19. [Google Scholar] [CrossRef]
- Kung, H.-T. Why Systolic Architectures? Computer 1982, 15, 37–46. [Google Scholar] [CrossRef]
- Cheng, C.; Parhi, K.K. Hardware Efficient Fast DCT Based on Novel Cyclic Convolution Structures. IEEE Trans. Signal Process. 2006, 54, 4419–4434. [Google Scholar] [CrossRef]
- Meher, P.K. Systolic Designs for DCT Using a Low-Complexity Concurrent Convolutional Formulation. IEEE Trans. Circuits Syst. Video Technol. 2006, 16, 1041–1050. [Google Scholar] [CrossRef]
- Chiper, D.-F.; Swamy, M.N.S.; Ahmad, M.O. An Efficient Unified Framework for Implementation of a Prime-Length DCT/IDCT With High Throughput. IEEE Trans. Signal Process. 2007, 55, 2925–2936. [Google Scholar] [CrossRef]
- Chiper, D.F. A Novel VLSI DHT Algorithm for a Highly Modular and Parallel Architecture. IEEE Trans. Circuits Syst. II Express Briefs 2013, 60, 282–286. [Google Scholar] [CrossRef]
- Xie, J.; Meher, P.K.; He, J. Hardware-Efficient Realization of Prime-Length DCT Based on Distributed Arithmetic. IEEE Trans. Comput. 2013, 62, 1170–1178. [Google Scholar] [CrossRef]
- Kung, S.Y. VLSI Array Processors; Prentice Hall: Hoboken, NJ, USA, 1988; ISBN 978-0-13-942749-7. [Google Scholar]
- Chiper, D.F.; Cotorobai, L.-T. A Low Complexity Algorithm for the VLSI Implementation of DST Based on Band-Correlation Structures. In Proceedings of the 2019 International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 11–12 July 2019; pp. 1–4. [Google Scholar]
- Chiper, D.F.; Cotorobai, L.-T. A New Approach for a Unified Architecture for Type IV DCT/DST with an Efficient Incorporation of Obfuscation Technique. Electronics 2021, 10, 1656. [Google Scholar] [CrossRef]
- Chiper, D.F.; Cracan, A. A New VLSI Algorithm for a VLSI Implementation of MDST Using Obfuscation Technique. In Proceedings of the 2022 International Symposium on Electronics and Telecommunications (ISETC), Timisoara, Romania, 10–11 November 2022; pp. 1–4. [Google Scholar]
- Jen, C.-W.; Hsu, H.-Y. The Design of a Systolic Array with Tags Input. In Proceedings of the 1988 IEEE International Symposium on Circuits and Systems (ISCAS), Espoo, Finland, 7–9 June 1988; Volume 3, pp. 2263–2266. [Google Scholar]
- Chiper, D.F.; Cracan, A. An Efficient Algorithm and Architecture for the VLSI Implementation of Integer DCT That Allows an Efficient Incorporation of the Hardware Security with a Low Overhead. Appl. Sci. 2023, 13, 6927. [Google Scholar] [CrossRef]
Constrained Clock Period/Frequency | Critical Path Delay + Setup Time [ps] | Interconnect Area [µm2] | Combinational Area [µm2] | Flop Area [µm2] | Total Area [µm2] | Equivalent Gates Count | Static Power [µW] | Dynamic Power at Constrained Clock Frequency [mW] |
---|---|---|---|---|---|---|---|---|
50 ns/20 MHz | 209 | 238.31 | 358.52 | 311.82 | 935.44 | 46,406.71 | 25.8 | 0.0 at 20 MHz |
10 ns/100 MHz | 209 | 238.31 | 358.52 | 311.82 | 935.44 | 46,406.71 | 25.8 | 0.1 at 100 MHz |
1 ns/1 GHz | 213 | 242.55 | 361.51 | 311.82 | 940.60 | 46,662.89 | 26.2 | 1.4 at 1 GHz |
300 ps/3.33 GHz | 203 | 246.70 | 364.02 | 312.02 | 947.76 | 47,017.95 | 26.5 | 4.8 at 3.33 GHz |
250 ps/4 GHz | 207 | 246.65 | 363.58 | 312.02 | 947.26 | 46,993.09 | 26.5 | 5.7 at 4 GHz |
200 ps/5 GHz | 196 | 262.31 | 370.36 | 311.82 | 974.62 | 48,350.56 | 27.0 | 7.3 at 5 GHz |
175 ps/5.71 GHz | 175 | 279.77 | 380.24 | 311.82 | 1006.29 | 49,921.55 | 28.1 | 8.9 at 5.71 GHz |
150 ps/6.67 GHz | 150 | 308.64 | 405.16 | 312.02 | 1070.99 | 53,131.20 | 30.8 | 11.4 at 6.67 GHz |
130 ps/7.69 GHz | 130 | 346.53 | 461.34 | 312.02 | 1192.14 | 59,141.85 | 36.7 | 15.2 at 7.69 GHz |
Coefficient () | Approximate Fixed-Point Value () | Representation | Number of Adders/Subtractors | |
---|---|---|---|---|
0.568359375 | −11.73 | 3 | ||
−0.355468750 | −10.18 | 3 | ||
−0.970703125 | −12.03 | 2 | ||
−0.748046875 | −11.07 | 2 | ||
0.121093750 | −10.81 | 1 | ||
0.884765625 | −10.50 | 3 | ||
0.464843750 | −13.02 | 2 | ||
0.822265625 | −10.44 | 4 | ||
0.992187500 | −10.91 | 1 | ||
0.935546875 | −10.88 | 2 | ||
0.664062500 | −10.06 | 3 | ||
0.240234375 | −10.09 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiper, D.F.; Cracan, A. New Systolic Array Algorithms and VLSI Architectures for 1-D MDST. Sensors 2023, 23, 6220. https://doi.org/10.3390/s23136220
Chiper DF, Cracan A. New Systolic Array Algorithms and VLSI Architectures for 1-D MDST. Sensors. 2023; 23(13):6220. https://doi.org/10.3390/s23136220
Chicago/Turabian StyleChiper, Doru Florin, and Arcadie Cracan. 2023. "New Systolic Array Algorithms and VLSI Architectures for 1-D MDST" Sensors 23, no. 13: 6220. https://doi.org/10.3390/s23136220
APA StyleChiper, D. F., & Cracan, A. (2023). New Systolic Array Algorithms and VLSI Architectures for 1-D MDST. Sensors, 23(13), 6220. https://doi.org/10.3390/s23136220