A Finite-Time Sliding-Mode Controller Based on the Disturbance Observer and Neural Network for Hysteretic Systems with Application in Piezoelectric Actuators
Abstract
:1. Introduction
2. Preliminaries
3. Adaptive Finite-Time DOB and SMC Design
4. Experimental Setup and Results
4.1. Experimental Setup
4.2. Experimental Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shao, J.Y.; Chen, X.; Li, X.; Tian, H.; Wang, C.; Lu, B. Nanoimprint lithography for the manufacturing of flexible electronics. Sci. China Technol. Sci. 2019, 62, 175–198. [Google Scholar]
- Cheng, H.-C.; Liu, S.-C.; Hsu, C.-C.; Lin, H.-Y.; Shih, F.; Wu, M.; Liang, K.-C.; Lai, M.-F.; Fang, W. On the design of piezoelectric MEMS scanning mirror for large reflection area and wide scan angle. Sens. Actuators A Phys. 2023, 349, 114010. [Google Scholar] [CrossRef]
- Lau, J.Y.; Liang, W.; Tan, K.K. Enhanced robust impedance control of a constrained piezoelectric actuator-based surgical device. Sens. Actuators A Phys. 2019, 290, 97–106. [Google Scholar]
- Qin, Y.; Soundararajan, R.; Jia, R.; Huang, S.L. Direct inverse linearization of piezoelectric actuator’s initial loading curve and its applications in full-fifield optical coherence tomography (FF-OCT). Mech. Syst. Signal Process. 2020, 148, 107147. [Google Scholar]
- Leang, K.K.; Devasia, S. Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators. IEEE Trans. Control Syst. Technol. 2007, 15, 927–935. [Google Scholar]
- Tao, Y.; Li, H.; Zhu, L. Hysteresis modeling with frequency-separation-based Gaussian process and its application to sinusoidal scanning for fast imaging of atomic force microscope. Sens. Actuators A Phys. 2020, 311, 112070. [Google Scholar]
- Clayton, G.M.; Tien, S.; Leang, K.K.; Zou, Q.; Devasia, S. A review of feedforward control approaches in nanopositioning for high-speed SPM. J. Dyn. Syst. Meas. Control 2009, 131, 061101. [Google Scholar]
- Salapaka, S.M.; Salapaka, M.V. Scanning Probe Microscopy. IEEE Control Syst. Mag. 2008, 28, 65–83. [Google Scholar]
- Ma, J.; Tian, L.; Li, Y.; Yang, Z.; Cui, Y.; Chu, J. Hysteresis compensation of piezoelectric deformable mirror based on Prandtl–Ishlinskii model. Opt. Commun. 2018, 416, 94–99. [Google Scholar]
- Gu, G.Y.; Zhu, L.M.; Su, C.Y.; Ding, H.; Fatikow, S. Modeling and Control of Piezo-Actuated Nanopositioning Stages: A Survey. IEEE Trans. Autom. Sci. Eng. 2016, 13, 313–332. [Google Scholar]
- Gu, G.; Zhu, L. An experimental comparison of proportional-integral, sliding mode, and robust adaptive control for piezo-actuated nanopositioning stages. Rev. Sci. Instrum. 2014, 85, 055112. [Google Scholar]
- Dong, R.; Tan, Y.; Xie, Y. Identification of micropositioning stage with piezoelectric actuators. Mech. Syst. Signal Process. 2016, 75, 618–630. [Google Scholar]
- Xu, Y.; Li, X.; Yang, X.; Yang, Z.; Wu, L.; Chen, Q. A two-stage model for rate-dependent inverse hysteresis in reluctance actuators. Mech. Syst. Signal Process. 2020, 135, 106427. [Google Scholar]
- Ko, Y.-R.; Hwang, Y.; Chae, M.; Kim, T.-H. Direct identification of generalized Prandtl-Ishlinskii model inversion for asymmetric hysteresis compensation. ISA Trans. 2017, 70, 209–218. [Google Scholar]
- Li, Z.; Zhang, X.; Ma, L. Development of a combined Prandtl Ishlinskii-Preisach model. Sens. Actuators A Phys. 2020, 304, 111797. [Google Scholar]
- Ye, M.; Wang, X. Parameter estimation of the Bouc-Wen hysteresis model using particle swarm optimization. Smart Mater. Struct. 2007, 16, 2341–2349. [Google Scholar]
- Chen, G.; Yan, X.; Cai, J.; Guo, H. Hysteresis nonlinear modeling and compensation of piezoelectric ceramic sensors in micro measurement systems. Meas. Sci. Technol. 2018, 29, 095102. [Google Scholar]
- Mohammadzaheri, M.; Al-Sulti, S.; Ghodsi, M.; Soltani, P. Charge Estimation of Piezoelectric Actuators: A Comparative Study. Energies 2023, 16, 3982. [Google Scholar]
- Bazghaleh, M.; Grainger, S.; Mohammadzaheri, M. A review of charge methods for driving piezoelectric actuators. J. Intell. Mater. Syst. Struct. 2018, 29, 2096–2104. [Google Scholar]
- Janaideh, M.A.; Rakotondrabe, M.; Aljanaideh, O. Further Results on Hysteresis Compensation of Smart Micropositioning Systems with the Inverse Prandtl-Ishlinskii Compensator. IEEE Trans. Control Syst. Technol. 2016, 24, 428–439. [Google Scholar]
- Al Janaideh, M.; Rakotondrabe, M.; Al-Darabsah, I.; Aljanaideh, O. Internal model-based feedback control design for inversion-free feedforward rate-dependent hysteresis compensation of piezoelectric cantilever actuator. Control Eng. Pract. 2018, 72, 29–41. [Google Scholar]
- Al-Nadawi, Y.K.; Tan, X.; Khalil, H.K. Inversion-Free Hysteresis Compensation via Adaptive Conditional Servomechanism with Application to Nanopositioning Control. IEEE Trans. Control Syst. Technol. 2021, 29, 1922–1935. [Google Scholar]
- Mao, X.; Wang, Y.; Liu, X.; Guo, Y. A Hybrid Feedforward-Feedback Hysteresis Compensator in Piezoelectric Actuators Based on Least-Squares Support Vector Machine. IEEE Trans. Ind. Electron. 2018, 65, 5704–5711. [Google Scholar]
- Wang, G.; Xu, Q. Adaptive Terminal Sliding Mode Control for Motion Tracking of a Micropositioning System. Asian J. Control 2018, 20, 1241–1252. [Google Scholar]
- Zhang, Y.; Yan, P. Adaptive observer-based integral sliding mode control of a piezoelectric nano-manipulator. IET Control Theory Appl. 2019, 13, 2173–2180. [Google Scholar]
- Cheng, L.; Liu, W.; Hou, Z.-G.; Yu, J.; Tan, M. Neural-Network-Based Nonlinear Model Predictive Control for Piezoelectric Actuators. IEEE Trans. Ind. Electron. 2015, 62, 7717–7727. [Google Scholar]
- Liu, W.; Cheng, L.; Hou, Z.-G.; Yu, J.; Tan, M. An Inversion-free Predictive Controller for Piezoelectric Actuators Based on A Dynamic Linearized Neural Network Model. IEEE/ASME Trans. Mechatron. 2016, 21, 214–226. [Google Scholar]
- Zhang, C.; Yu, Y.; Wang, Y.; Zhou, M. Takagi–Sugeno Fuzzy Neural Network Hysteresis Modeling for Magnetic Shape Memory Alloy Actuator Based on Modified Bacteria Foraging Algorithm. Int. J. Fuzzy Syst. 2020, 22, 1314–1329. [Google Scholar]
- Xu, R.; Zhou, M. Elman Neural Network-Based Identification of Krasnosel’skii–Pokrovskii Model for Magnetic Shape Memory Alloys Actuator. IEEE Trans. Magn. 2017, 53, 2002004. [Google Scholar]
- Lin, F.; Lee, S.; Chou, P. Intelligent Integral Backstepping Sliding-Mode Control Using Recurrent Neural Network for Piezo-flexural Nanopositioning Stage. Asian J. Control 2016, 18, 456–472. [Google Scholar]
- Zhang, X.; Li, Z.; Su, C.-Y.; Lin, Y.; Fu, Y. Implementable Adaptive Inverse Control of Hysteretic Systems via Output Feedback with Application to Piezoelectric Positioning Stages. IEEE Trans. Ind. Electron. 2016, 63, 5733–5743. [Google Scholar]
- Song, T.; Fang, L.; Wang, H. Model-free finite-time terminal sliding mode control with a novel adaptive sliding mode observer of uncertain robot systems. Asian J. Control 2022, 24, 1437–1451. [Google Scholar]
- Chen, H.; Ren, H.; Gao, Z.; Yu, F.; Guan, W.; Wang, D. Disturbance observer-based finite-time control scheme for dynamic positioning of ships subject to thruster faults. Int. J. Robust Nonlinear Control 2021, 31, 6255–6271. [Google Scholar]
- Zong, Q.; Shao, S. Decentralized finite-time attitude synchronization for multiple rigid spacecraft via a novel disturbance observer. ISA Trans. 2016, 65, 150–163. [Google Scholar] [PubMed]
- Lin, X.; Wang, Y.; Liu, Y. Neural-network-based robust terminal sliding-mode control of quadrotor. Asian J. Control 2022, 24, 427–438. [Google Scholar]
- Chen, J.; Ren, B.; Zhong, Q. UDE-Based Trajectory Tracking Control of Piezoelectric Stages. IEEE Trans. Ind. Electron. 2016, 63, 6450–6459. [Google Scholar]
- Xu, R.; Zhang, X.; Guo, H.; Zhou, M. Sliding Mode Tracking Control with Perturbation Estimation for Hysteresis Nonlinearity of Piezo-Actuated Stages. IEEE Access 2018, 6, 30617–30629. [Google Scholar] [CrossRef]
- Lau, J.Y.; Liang, W.; Liaw, H.C.; Tan, K.K. Sliding Mode Disturbance Observer-based Motion Control for a Piezoelectric Actuator-based Surgical Device. Asian J. Control 2018, 20, 1194–1203. [Google Scholar]
- Zhang, Y.; Yan, P. Disturbance observer-based prescribed adaptive control for rate-dependent hysteretic systems. Int. J. Robust Nonlinear Control 2018, 28, 2298–2317. [Google Scholar]
- Yang, C.; Verbeek, N.; Xia, F.; Wang, Y.; Youcef-Toumi, K. Modeling and Control of Piezoelectric Hysteresis: A Polynomial-Based Fractional Order Disturbance Compensation Approach. IEEE Trans. Ind. Electron. 2021, 68, 3348–3358. [Google Scholar]
1 Hz | 50 Hz | 100 Hz | 200 Hz | |
---|---|---|---|---|
Con.1 (µm) | 0.0129 | 0.0261 | 0.0434 | 0.0440 |
Con.2 (µm) | 0.0165 | 0.0255 | 0.0406 | 0.0434 |
Proposed method (µm) | 0.0063 | 0.0067 | 0.0257 | 0.0268 |
1 Hz | 50 Hz | 100 Hz | 200 Hz | |
---|---|---|---|---|
Con.1 (µm) | 0.0617 | 0.0804 | 0.0804 | 0.1645 |
Con.2 (µm) | 0.0634 | 0.0637 | 0.0724 | 0.1494 |
Proposed method (µm) | 0.0238 | 0.0421 | 0.0504 | 0.1006 |
1 Hz | 50 Hz | 100 Hz | 200 Hz | |
---|---|---|---|---|
Con.1 (µm) | 0.0258 | 0.0307 | 0.0520 | 0.0526 |
Con.2 (µm) | 0.0287 | 0.0342 | 0.0536 | 0.0553 |
Proposed method (µm) | 0.0132 | 0.0141 | 0.0142 | 0.0261 |
1 Hz | 50 Hz | 100 Hz | 200 Hz | |
---|---|---|---|---|
Con.1 (µm) | 0.1209 | 0.1166 | 0.1232 | 0.1691 |
Con.2 (µm) | 0.1343 | 0.1664 | 0.1725 | 0.1954 |
Proposed method (µm) | 0.0478 | 0.0604 | 0.0535 | 0.1025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, L.; Chen, W.; Tian, L.; Xie, Y. A Finite-Time Sliding-Mode Controller Based on the Disturbance Observer and Neural Network for Hysteretic Systems with Application in Piezoelectric Actuators. Sensors 2023, 23, 6246. https://doi.org/10.3390/s23146246
Cheng L, Chen W, Tian L, Xie Y. A Finite-Time Sliding-Mode Controller Based on the Disturbance Observer and Neural Network for Hysteretic Systems with Application in Piezoelectric Actuators. Sensors. 2023; 23(14):6246. https://doi.org/10.3390/s23146246
Chicago/Turabian StyleCheng, Liqun, Wanzhong Chen, Liguo Tian, and Ying Xie. 2023. "A Finite-Time Sliding-Mode Controller Based on the Disturbance Observer and Neural Network for Hysteretic Systems with Application in Piezoelectric Actuators" Sensors 23, no. 14: 6246. https://doi.org/10.3390/s23146246
APA StyleCheng, L., Chen, W., Tian, L., & Xie, Y. (2023). A Finite-Time Sliding-Mode Controller Based on the Disturbance Observer and Neural Network for Hysteretic Systems with Application in Piezoelectric Actuators. Sensors, 23(14), 6246. https://doi.org/10.3390/s23146246