Sensors for Biomass Monitoring in Vegetated Green Infrastructure: A Review
Abstract
:1. Introduction
Bioremediation in a Rain Garden through Biofilm
2. Review of Potential Methods for Sensing Biofilm Activity in a Rain Garden
2.1. Microscopical Methods for Measuring Biofilms
2.2. Piezoelectric
2.3. Fiber-Optics
2.4. Thermometric Biofilm Sensing
2.5. Electrochemical Sensing of Biofilm
3. Discussion
3.1. Microscopical
3.2. Piezoelectric
3.3. Fiber-Optic Sensors
3.4. Thermometric
3.5. Electrochemical
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- LeFevre, G.H. Fate and Degradation of Petroleum Hydrocarbons in Stormwater Bioretention Cells. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2012. [Google Scholar]
- Khan, U.T.; Valeo, C.; Chu, A.; van Duin, B. Bioretention Cell Efficacy in Cold Climates. In Low Impact Development 2010; American Society of Civil Engineers: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- LeFevre, G.H.; Paus, K.H.; Natarajan, P.; Gulliver, J.S.; Novak, P.J.; Hozalski, R.M. Review of Dissolved Pollutants in Urban Storm Water and Their Removal and Fate in Bioretention Cells. J. Environ. Eng. 2015, 141, 4014050. [Google Scholar] [CrossRef]
- Yu, T. Modelling Biofilm Activity in Bioretention Cells. Master’s Thesis, University of Victoria, Victoria, BC, Canada, 2015. [Google Scholar]
- Winston, R.J.; Dorsey, J.D.; Hunt, W.F. Quantifying Volume Reduction and Peak Flow Mitigation for Three Bioretention Cells in Clay Soils in Northeast Ohio. Sci. Total Environ. 2016, 553, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.; Davis, A.P. Evaluation and Optimization of Bioretention Media for Treatment of Urban Storm Water Runoff. J. Environ. Eng. 2005, 131, 1521–1531. [Google Scholar] [CrossRef] [Green Version]
- Garbarini, D.R.; Lion, L.W. Influence of the Nature of Soil Organics on the Sorption of Toluene and Trichloroethylene. Environ. Sci. Technol. 1986, 20, 1263–1269. [Google Scholar] [CrossRef]
- Mihelcic, J.R.; Zimmerman, J.B. Environmental Engineering: Fundamentals, Sustainability, Design; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Somaye Alaedini, P.Z. The Phytoremediation Technique for Cleaning up Contaminated Soil by Amaranthus sp. J. Environ. Anal. Toxicol. 2014, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Lone, M.I.; He, Z.; Stoffella, P.J.; Yang, X. Phytoremediation of Heavy Metal Polluted Soils and Water: Progresses and Perspectives. J. Zhejiang Univ. Sci. B 2008, 9, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Seneviratne, G.; Wijepala, P.C.; Chandrasiri, K.P.N.K. Developed Biofilm-Based Microbial Ameliorators for Remediating Degraded Agroecosystems and the Environment. In Biofilms in Plant and Soil Health; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 327–335. [Google Scholar] [CrossRef]
- Fujishige, N.A.; Kapadia, N.N.; Hirsch, A.N.N.M. A Feeling for the Micro-Organism: Structure on a Small Scale. Biofilms on Plant Roots. Bot. J. Linn. Soc. 2006, 150, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Kalam, S.; Basu, A.; Ankati, S. Plant Root-Associated Biofilms in Bioremediation. In Biofilms in Plant and Soil Health; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 337–355. [Google Scholar] [CrossRef]
- Morgan, R.; Kohn, S.; Hwang, S.-H.; Hassett, D.J.; Sauer, K. BdlA, a Chemotaxis Regulator Essential for Biofilm Dispersion in Pseudomonas Aeruginosa. J. Bacteriol. 2006, 188, 7335–7343. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I.; Khan, M.S.; Altaf, M.M.; Qais, F.A.; Ansari, F.A.; Rumbaugh, K.P. Biofilms: An Overview of Their Significance in Plant and Soil Health. In Biofilms in Plant and Soil Health; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1–25. [Google Scholar] [CrossRef]
- Belimov, A.A.; Kunakova, A.M.; Safronova, V.I.; Stepanok, V.V.; Yudkin, L.Y.; Alekseev, Y.V.; Kozhemyakov, A.P. Employment of Rhizobacteria for the Inoculation of Barley Plants Cultivated in Soil Contaminated with Lead and Cadmium. Microbiology 2004, 73, 99–106. [Google Scholar] [CrossRef]
- Singh, R.; Paul, D.; Jain, R.K. Biofilms: Implications in Bioremediation. Trends Microbiol. 2006, 14, 389–397. [Google Scholar] [CrossRef]
- Mendoza Gonzalez, I.M.; Kloc, J.J. The Study of Biological Wastewater Treatment through Biofilm Development on Synthetic Material vs. Membranes; Worcester Polytechnic Institute: Worcester, MA, USA, 2012. [Google Scholar]
- Flemming, H.C.; Schaule, G.; McDonogh, R.; Ridgway, H.F. Effects and Extent of Biofilm Accumulation in Membrane Systems. In Biofouling and Biocorrosion in Industrial Water Systems; CRC Press: Boca Raton, FL, USA, 1994; pp. 63–89. [Google Scholar]
- del Pozo, J.L.; Patel, R. The Challenge of Treating Biofilm-Associated Bacterial Infections. Clin. Pharmacol. Ther. 2007, 82, 204–209. [Google Scholar] [CrossRef]
- Cooper, J.E.; Rao, J.R. Molecular Approaches to Soil, Rhizosphere and Plant Microorganism Analysis; CAB International: Oxfordshire, UK, 2006; 307p, ISBN 9781845930622. [Google Scholar]
- Henry, J.G.; Heinke, G.W. Environmental Science and Engineering, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1996; 778p, ISBN 0-13-120650-8. [Google Scholar]
- Hall, N.C.; Sikaroodi, M.; Hogan, D.; Jones, R.C.; Gillevet, P.M. The Presence of Denitrifiers In Bacterial Communities of Urban Stormwater Best Management Practices (BMPs). Environ. Manag. 2022, 69, 89–110. [Google Scholar] [CrossRef]
- Kang, J.W. 2014. Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol. Lett. 2014, 36, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, C.C.C.R.; da Fonseca, M.M.R. Assessment of Three-Dimensional Biofilm Structure Using an Optical Microscope. Biotechniques 2007, 42, 616–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decho, A.W.; Gutierrez, T. Microbial Extracellular Polymeric Substances (EPSs) in Ocean Systems. Front. Microbiol. 2017, 8, 922. [Google Scholar] [CrossRef]
- Vlamakis, H.; Chai, Y.; Beauregard, P.; Losick, R.; Kolter, R. Sticking Together: Building a Biofilm the Bacillus Subtilis Way. Nat. Rev. Microbiol. 2013, 11, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Ansari, F.A.; Jafri, H.; Ahmad, I.; Abulreesh, H.H. Factors Affecting Biofilm Formation Inin Vitroand in the Rhizosphere. In Biofilms in Plant and Soil Health; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 275–290. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilms: Microbial Life on Surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef]
- Dunne, W.M., Jr. Bacterial Adhesion: Seen Any Good Biofilms Lately? Clin. Microbiol. Rev. 2002, 15, 155–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, A.B.; Lennox, J.E.; Ross, R.J. Biofilms: The Hypertextbook. Available online: https://www.cs.montana.edu/webworks/projects/stevesbook/index.html (accessed on 5 January 2020).
- O’Toole, G.A.; Ghannoum, M. Introductions to Biofilms: Conceptual Themes. In Microbial Biofilms; Wiley Online Library: Hoboken, NJ, USA, 2004. [Google Scholar] [CrossRef]
- Janknecht, P.; Melo, L.F. Online Biofilm Monitoring. Rev. Environ. Sci. Bio/Technol. 2003, 2, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Longo, M.; Rioual, S.; Talbot, P.; Faÿ, F.; Hellio, C.; Lescop, B. A high sensitive microwave sensor to monitor bacterial and biofilm growth. Sens. Bio-Sens. Res. 2022, 36, 100493. [Google Scholar] [CrossRef]
- Funari, R.; Shen, A.Q. Detection and Characterization of Bacterial Biofilms and Biofilm-Based Sensors. ACS Sens. 2022, 7, 347–357. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Lopez de Alda, M.J.; Barceló, D. Biosensors as Useful Tools for Environmental Analysis and Monitoring. Anal. Bioanal. Chem. 2006, 386, 1025–1041. [Google Scholar] [CrossRef]
- Hannig, C.; Hannig, M.; Rehmer, O.; Braun, G.; Hellwig, E.; Al-Ahmad, A. Fluorescence Microscopic Visualization and Quantification of Initial Bacterial Colonization on Enamel in Situ. Arch. Oral Biol. 2007, 52, 1048–1056. [Google Scholar] [CrossRef]
- Grohmann, E.; Vaishampayan, A. Techniques in Studying Biofilms and Their Characterization: Microscopy to Advanced Imaging Systemin Vitroandin Situ. In Biofilms in Plant and Soil Health; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 215–230. [Google Scholar] [CrossRef]
- Neu, T.R.; Manz, B.; Volke, F.; Dynes, J.J.; Hitchcock, A.P.; Lawrence, J.R. Advanced Imaging Techniques for Assessment of Structure, Composition and Function in Biofilm Systems. FEMS Microbiol. Ecol. 2010, 72, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pamp, S.J.; Sternberg, C.; Tolker-Nielsen, T. Insight into the Microbial Multicellular Lifestyle via Flow-Cell Technology and Confocal Microscopy. Cytom. Part A 2009, 75A, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Rajeb, A.B.; Kallali, H.; Ben Aissa, N.; Bouzaiene, O.; Jellali, S.; Jedidi, N.; Hassen, A. Soil Microbial Growth and Biofilm Expansion Assessment under Wastewater Infiltration Percolation Treatment Process: Column Experiments. Desalination 2009, 246, 514–525. [Google Scholar] [CrossRef]
- Baum, M.M.; Kainović, A.; O’Keeffe, T.; Pandita, R.; McDonald, K.; Wu, S.; Webster, P. Characterization of Structures in Biofilms Formed by a Pseudomonas Fluorescens Isolated from Soil. BMC Microbiol. 2009, 9, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delatolla, R.; Tufenkji, N.; Comeau, Y.; Lamarre, D.; Gadbois, A.; Berk, D. In Situ Characterization of Nitrifying Biofilm: Minimizing Biomass Loss and Preserving Perspective. Water Res. 2009, 43, 1775–1787. [Google Scholar] [CrossRef]
- Bergmans, L.; Moisiadis, P.; Van Meerbeek, B.; Quirynen, M.; Lambrechts, P. Microscopic Observation of Bacteria: Review Highlighting the Use of Environmental SEM. Int. Endod. J. 2005, 38, 775–788. [Google Scholar] [CrossRef] [Green Version]
- Cabala, J.; Teper, L. Metalliferous Constituents of Rhizosphere Soils Contaminated by Zn–Pb Mining in Southern Poland. Water. Air. Soil Pollut. 2006, 178, 351–362. [Google Scholar] [CrossRef]
- Luster, J.; Göttlein, A.; Nowack, B.; Sarret, G. Sampling, Defining, Characterising and Modeling the Rhizosphere—The Soil Science Tool Box. Plant Soil 2008, 321, 457–482. [Google Scholar] [CrossRef]
- Azeredo, J.; Azevedo, N.F.; Briandet, R.; Cerca, N.; Coenye, T.; Costa, A.R.; Desvaux, M.; Di Bonaventura, G.; Hébraud, M.; Jaglic, Z.; et al. Critical Review on Biofilm Methods. Crit. Rev. Microbiol. 2016, 43, 313–351. [Google Scholar] [CrossRef] [Green Version]
- Nivens, D.E.; Chambers, J.Q.; Anderson, T.R.; White, D.C. Long-Term, on-Line Monitoring of Microbial Biofilms Using a Quartz Crystal Microbalance. Anal. Chem. 1993, 65, 65–69. [Google Scholar] [CrossRef]
- Fischer, M.; Triggs, G.J.; Krauss, T.F. Optical Sensing of Microbial Life on Surfaces. Appl. Environ. Microbiol. 2016, 82, 1362–1371. [Google Scholar] [CrossRef] [Green Version]
- Flemming, H.-C.; Tamachkiarowa, A.; Klahre, J.; Schmitt, J. Monitoring of Fouling and Biofouling in Technical Systems. Water Sci. Technol. 1998, 38, 291–298. [Google Scholar] [CrossRef]
- Tamachkiarow, A.; Flemming, H.-C. On-Line Monitoring of Biofilm Formation in a Brewery Water Pipeline System with a Fibre Optical Device. Water Sci. Technol. 2003, 47, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, M.; Wahl, M.; Friedrichs, G. Design and Field Application of a UV-LED Based Optical Fiber Biofilm Sensor. Biosens. Bioelectron. 2012, 33, 172–178. [Google Scholar] [CrossRef]
- Ertürk, G.; Mattiasson, B. Capacitive Biosensors and Molecularly Imprinted Electrodes. Sensors 2017, 17, 390. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Romero, D.F.; Behrmann, O.; Dame, G.; Urban, G.A. Dynamic Thermal Sensor for Biofilm Monitoring. Sens. Actuators A Phys. 2014, 213, 43–51. [Google Scholar] [CrossRef]
- Peter Jurtshuk, J.; Baron, S. Bacterial Metabolism. In Medical Microbiology, 4th ed.; University of Texas Medical Branch at Galveston: Gelveston, TX, USA, 1996. [Google Scholar]
- Brosel-Oliu, S.; Uria, N.; Abramova, N.; Bratov, A. Impedimetric Sensors for Bacteria Detection. In Biosensors—Micro and Nanoscale Applications; InTech: London, UK, 2015. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Chen, W.; Mulchandani, A. Microbial Biosensors. Anal. Chim. Acta 2006, 568, 200–210. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, X.; Duan, Y.; Wang, L.; Cheng, Z.; Cheng, J. A Review of Impedance Measurements of Whole Cells. Biosens. Bioelectron. 2016, 77, 824–836. [Google Scholar] [CrossRef]
- Yates, M.; Strycharz-Glaven, S.; Golden, J.; Roy, J.; Tsoi, S.; Erickson, J.; El-Naggar, M.; Calabrese Barton, S.; Tender, L. Characterizing Electron Transport through Living Biofilms. J. Vis. Exp. 2018, 136, 54671. [Google Scholar] [CrossRef] [Green Version]
- Chroma Systems Solutions. Series & Parallel Impedance Parameters and Equivalent Circuits. 2019. Electronics-Tutorials. AC Capacitance and Capacitive Reactance. 2019. Available online: https://www.electronics-tutorials.ws/accircuits/ac-capacitance.html (accessed on 12 December 2019).
- Grossi, M.; Lanzoni, M.; Pompei, A.; Lazzarini, R.; Matteuzzi, D.; Riccò, B. An Embedded Portable Biosensor System for Bacterial Concentration Detection. Biosens. Bioelectron. 2010, 26, 983–990. [Google Scholar] [CrossRef]
- Pal, N.; Sharma, S.; Gupta, S. Sensitive and Rapid Detection of Pathogenic Bacteria in Small Volumes Using Impedance Spectroscopy Technique. Biosens. Bioelectron. 2016, 77, 270–276. [Google Scholar] [CrossRef]
- Vanhala, H.; Soininen, H. Laboratory Technique for Measurement of Spectral Induced Polarization Response of Soil Sampies1. Geophys. Prospect. 1995, 43, 655–676. [Google Scholar] [CrossRef]
- Revil, A.; Coperey, A.; Shao, Z.; Florsch, N.; Fabricius, I.L.; Deng, Y.; Delsman, J.R.; Pauw, P.S.; Karaoulis, M.; de Louw, P.G.B.; et al. Complex Conductivity of Soils. Water Resour. Res. 2017, 53, 7121–7147. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.A.; Atekwana, E.; Atekwana, E.; Slater, L.D.; Rossbach, S.; Mormile, M.R. Microbial Growth and Biofilm Formation in Geologic Media Is Detected with Complex Conductivity Measurements. Geophys. Res. Lett. 2006, 33, L18403. [Google Scholar] [CrossRef]
- Pamp, S.J.; Tolker-Nielsen, T. Multiple Roles of Biosurfactants in Structural Biofilm Development by Pseudomonas Aeruginosa. J. Bacteriol. 2007, 189, 2531–2539. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, J.R.; Korber, D.R.; Hoyle, B.D.; Costerton, J.W.; Caldwell, D.E. Optical Sectioning of Microbial Biofilms. J. Bacteriol. 1991, 173, 6558–6567. [Google Scholar] [CrossRef] [Green Version]
- Dheilly, A.; Linossier, I.; Darchen, A.; Hadjiev, D.; Corbel, C.; Alonso, V. Monitoring of Microbial Adhesion and Biofilm Growth Using Electrochemical Impedancemetry. Appl. Microbiol. Biotechnol. 2008, 79, 157–164. [Google Scholar] [CrossRef]
- Zibaii, M.I.; Kazemi, A.; Latifi, H.; Azar, M.K.; Hosseini, S.M.; Ghezelaiagh, M.H. Measuring Bacterial Growth by Refractive Index Tapered Fiber Optic Biosensor. J. Photochem. Photobiol. B Biol. 2010, 101, 313–320. [Google Scholar] [CrossRef]
- Hannig, C.; Follo, M.; Hellwig, E.; Al-Ahmad, A. Visualization of Adherent Micro-Organisms Using Different Techniques. J. Med. Microbiol. 2010, 59, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ominami, Y. Environmental SEM (Atmospheric SEM). In Compendium of Surface and Interface Analysis; Springer: Singapore, 2018; pp. 165–169. [Google Scholar] [CrossRef]
- Ming, Y.; Gessei, T.; Miyajima, K.; Munkhjargal, M.; Arakawa, T.; Mitsubayashi, K. Fluorometric Gas-Phase Biosensor (Bio-Sniffer) with UV-LED Emission Light for Formaldehyde Vapor. In Proceedings of the 2013 International Conference on Optical MEMS and Nanophotonics (OMN), Kanazawa, Japan, 18–22 August 2013; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Su, L.; Jia, W.; Hou, C.; Lei, Y. Microbial Biosensors: A Review. Biosens. Bioelectron. 2011, 26, 1788–1799. [Google Scholar] [CrossRef]
- Xu, Y.; Dhaouadi, Y.; Stoodley, P.; Ren, D. Sensing the Unreachable: Challenges and Opportunities in Biofilm Detection. Curr. Opin. Biotechnol. 2020, 64, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Ehosioke, S.; Garre, S.; Kremer, T.; Rao, S.; Kemna, A.; Huisman, J.A.; Zimmermann, E.; Javaux, M.; Nguyen, F. A New Method for Characterizing the Complex Electrical Properties of Root Segments. In Proceedings of the Root Research at the Forefront of Science International Symposium (ISRR-10), Jerusalem, Israel, 8–12 July 2018. [Google Scholar] [CrossRef]
- Paredes, J.; Becerro, S.; Arana, S. Comparison of Real Time Impedance Monitoring of Bacterial Biofilm Cultures in Different Experimental Setups Mimicking Real Field Environments. Sens. Actuators B Chem. 2014, 195, 667–676. [Google Scholar] [CrossRef]
- Turolla, A.; Di Mauro, M.; Mezzera, L.; Antonelli, M.; Carminati, M. Development of a Miniaturized and Selective Impedance Sensor for Real-Time Slime Monitoring in Pipes and Tanks. Sens. Actuators B Chem. 2019, 281, 288–295. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalilian, F.; Valeo, C.; Chu, A.; Bhiladvala, R. Sensors for Biomass Monitoring in Vegetated Green Infrastructure: A Review. Sensors 2023, 23, 6404. https://doi.org/10.3390/s23146404
Jalilian F, Valeo C, Chu A, Bhiladvala R. Sensors for Biomass Monitoring in Vegetated Green Infrastructure: A Review. Sensors. 2023; 23(14):6404. https://doi.org/10.3390/s23146404
Chicago/Turabian StyleJalilian, Farhad, Caterina Valeo, Angus Chu, and Rustom Bhiladvala. 2023. "Sensors for Biomass Monitoring in Vegetated Green Infrastructure: A Review" Sensors 23, no. 14: 6404. https://doi.org/10.3390/s23146404
APA StyleJalilian, F., Valeo, C., Chu, A., & Bhiladvala, R. (2023). Sensors for Biomass Monitoring in Vegetated Green Infrastructure: A Review. Sensors, 23(14), 6404. https://doi.org/10.3390/s23146404