Evaluation of Three Soil Moisture Profile Sensors Using Laboratory and Field Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested SMPSs and Measurement Principles
2.2. The SoilVUE10 Sensor
2.2.1. The Drill&Drop Sensor
2.2.2. The SMT500 Sensor
2.3. Experimental Setups
2.3.1. Laboratory Experiment
2.3.2. Field Experiment—The Sandbox
2.4. Data Processing
2.4.1. Temperature Correction
2.4.2. Fitting van Genuchten–Mualem Parameters
3. Results and Discussion
3.1. Laboratory Experiment
3.2. Field Experiment—The Sandbox
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNESCO. Nature-Based Solutions for Water; Unesco: Paris, France, 2018; ISBN 9789231002649. [Google Scholar]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Nolz, R.; Cepuder, P.; Balas, J.; Loiskandl, W. Soil water monitoring in a vineyard and assessment of unsaturated hydraulic parameters as thresholds for irrigation management. Agric. Water Manag. 2016, 164, 235–242. [Google Scholar] [CrossRef]
- Banđur, Đ.; Jakšić, B.; Banđur, M.; Jović, S. An analysis of energy efficiency in Wireless Sensor Networks (WSNs) applied in smart agriculture. Comput. Electron. Agric. 2019, 156, 500–507. [Google Scholar] [CrossRef]
- Placidi, P.; Morbidelli, R.; Fortunati, D.; Papini, N.; Gobbi, F.; Scorzoni, A. Monitoring Soil and Ambient Parameters in the IoT Precision Agriculture Scenario: An Original Modeling Approach Dedicated to Low-Cost Soil Water Content Sensors. Sensors 2021, 21, 5110. [Google Scholar] [CrossRef] [PubMed]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS Wagening. J. Life Sci. 2019, 90–91, 100315. [Google Scholar] [CrossRef]
- Giorgio, A.; Del Buono, N.; Berardi, M.; Vurro, M.; Vivaldi, G.A. Soil Moisture Sensor Information Enhanced by Statistical Methods in a Reclaimed Water Irrigation Framework. Sensors 2022, 22, 8062. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Jia, B.; Zhao, Y.; Wang, X.; Wei, M.; Dietzel, R. Estimate soil moisture of maize by combining support vector machine and chaotic whale optimization algorithm. Agric. Water Manag. 2022, 267, 107618. [Google Scholar] [CrossRef]
- Togneri, R.; Felipe dos Santos, D.; Camponogara, G.; Nagano, H.; Custódio, G.; Prati, R.; Fernandes, S.; Kamienski, C. Soil moisture forecast for smart irrigation: The primetime for machine learning. Expert Syst. Appl. 2022, 207, 117653. [Google Scholar] [CrossRef]
- Bogena, H.R.; Weuthen, A.; Huisman, J.A. Recent Developments in Wireless Soil Moisture Sensing to Support Scientific Research and Agricultural Management. Sensors 2022, 22, 9792. [Google Scholar] [CrossRef]
- Bogena, H.R.; Huisman, J.A.; Schilling, B.; Weuthen, A.; Vereecken, H. Effective Calibration of Low-Cost Soil Water Content Sensors. Sensors 2017, 17, 208. [Google Scholar] [CrossRef] [Green Version]
- Nolz, R. A review on the quantification of soil water balance components as a basis for agricultural water management with a focus on weighing lysimeters and soil water sensors/Ein Überblick über die Ermittlung von Wasserhaushaltsgrößen als Basis für die landeskulturelle Wasserwirtschaft mit Fokus auf Lysimeter und Bodenwassersensoren. Die Bodenkult. J. Land Manag. Food Environ. 2016, 67, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Birchak, J.R.; Gardner, C.G.; Hipp, J.E.; Victor, J.M. High dielectric constant microwave probes for sensing soil moisture. Proc. IEEE 1974, 62, 93–98. [Google Scholar] [CrossRef]
- Robinson, D.A.; Friedman, S.P. A method for measuring the solid particle permittivity or electrical conductivity of rocks, sediments, and granular materials. J. Geophys. Res. 2003, 108, 2076. [Google Scholar] [CrossRef] [Green Version]
- Topp, G.C.; Zegelin, S.; White, I. Impacts of the Real and Imaginary Components of Relative Permittivity on Time Domain Reflectometry Measurements in Soils. Soil Sci. Soc. Am. J. 2000, 64, 1244–1252. [Google Scholar] [CrossRef]
- Jackisch, C.; Germer, K.; Graeff, T.; Andrä, I.; Schulz, K.; Schiedung, M.; Haller-Jans, J.; Schneider, J.; Jaquemotte, J.; Helmer, P.; et al. Soil moisture and matric potential—An open field comparison of sensor systems. Earth Syst. Sci. Data 2020, 12, 683–697. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Niño, J.M.; Bogena, H.R.; Huisman, J.A.; Schilling, B.; Casadesús, J. On the Accuracy of Factory-Calibrated Low-Cost Soil Water Content Sensors. Sensors 2019, 19, 3101. [Google Scholar] [CrossRef] [Green Version]
- Kammerer, G.; Nolz, R.; Rodny, M.; Loiskandl, W. Performance of Hydra Probe and MPS-1 Soil Water Sensors in Topsoil Tested in Lab and Field. JWARP 2014, 06, 1207–1219. [Google Scholar] [CrossRef] [Green Version]
- Mazahrih, N.T.; Katbeh-Bader, N.; Evett, S.R.; Ayars, J.E.; Trout, T.J. Field Calibration Accuracy and Utility of Four Down-Hole Water Content Sensors. Vadose Zone J. 2008, 7, 992–1000. [Google Scholar] [CrossRef]
- Wilson, T.B.; Kochendorfer, J.; Diamond, H.J.; Meyers, T.P.; Hall, M.; French, B.; Myles, L.; Saylor, R.D. A field evaluation of the SoilVUE10 soil moisture sensor. Vadose Zone J. 2023, 22, e20241. [Google Scholar] [CrossRef]
- Dietrich, O.; Steidl, J. Field calibrations of a Diviner 2000 capacitive soil water content probe on a shallow groundwater site and the application in a weighable groundwater lysimeter. Agric. Water Manag. 2021, 252, 106874. [Google Scholar] [CrossRef]
- Kibirige, D.; Dobos, E. Off-Site Calibration Approach of EnviroScan Capacitance Probe to Assist Operational Field Applications. Water 2021, 13, 837. [Google Scholar] [CrossRef]
- Segovia-Cardozo, D.A.; Franco, L.; Provenzano, G. Detecting crop water requirement indicators in irrigated agroecosystems from soil water content profiles: An application for a citrus orchard. Sci. Total Environ. 2022, 806, 150492. [Google Scholar] [CrossRef] [PubMed]
- Bello, Z.A.; Tfwala, C.M.; van Rensburg, L.D. Evaluation of newly developed capacitance probes for continuous soil water measurement. Geoderma 2019, 345, 104–113. [Google Scholar] [CrossRef]
- Campora, M.; Palla, A.; Gnecco, I.; Bovolenta, R.; Passalacqua, R. The laboratory calibration of a soil moisture capacitance probe in sandy soils. Soil Water Res. 2020, 15, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Heimovaara, T.J.; Bouten, W.; Verstraten, J.M. Frequency domain analysis of time domain reflectometry waveforms: 2. A four-component complex dielectric mixing model for soils. Water Resour. Res. 1994, 30, 201–209. [Google Scholar] [CrossRef]
- Robinson, D.A.; Jones, S.B.; Wraith, J.M.; Or, D.; Friedman, S.P. A Review of Advances in Dielectric and Electrical Conductivity Measurement in Soils Using Time Domain Reflectometry. Vadose Zone J. 2003, 2, 444–475. [Google Scholar] [CrossRef]
- Campbell Scientific, Inc. SoilVUE10: Complete Soil Profiler. Product Manual, 2022. Available online: https://s.campbellsci.com/documents/us/manuals/soilvue10.pdf (accessed on 16 June 2023).
- Schwank, M.; Green, T.R.; Mätzler, C.; Benedickter, H.; Schulin, R.; Flühler, H. Characterization of EnviroSMART Capacitance Sensors for Measuring Soil Water Content; ETH Zurich: Zürich, Switzerland, 2006. [Google Scholar]
- Sentek Technologies. Calibration Manual: For Sentek Soil Moisture Sensors, Version 2.0. 2011. Available online: https://wpstaq-ap-southeast-2-media.s3.amazonaws.com/sentek/wp-content/uploads/media/2022/02/Calibration-Manual-V2.0.pdf (accessed on 4 July 2023).
- Sentek Technologies. Probe Configuration Utility User Guide: Version 1.9.8. 2023. Available online: https://sentektechnologies.com/download/probe-configuration-utility-manual/ (accessed on 4 July 2023).
- Campbell Scientific (Canada) Corp. Drill&Drop Soil Moisture Profiler: August 2016. Instruction Manual. 2016. Available online: https://s.campbellsci.com/documents/ca/manuals/drill&drop_man.pdf (accessed on 7 July 2023).
- Bechtold, M. Experimental and Numerical Studies on Solute Transport in Unsaturated Heterogeneous Porous Media under Evaporation Conditions; Rheinische Friedrich-Wilhelms-Universität Bonn: Bonn, Germany, 2012. [Google Scholar]
- Blonquist, J.M.; Jones, S.B.; Robinson, D.A. Standardizing Characterization of Electromagnetic Water Content Sensors: Part 2. Evaluation of Seven Sensing Systems. Vadose Zone J. 2005, 4, 1059–1069. [Google Scholar] [CrossRef]
- Heimovaara, T.J.; Bouten, W. A computer-controlled 36-channel time domain reflectometry system for monitoring soil water contents. Water Resour. Res. 1990, 26, 2311–2316. [Google Scholar] [CrossRef]
- Campbell Scientific, Inc. TDR100 Time Domain Reflectometry Systems. Available online: https://s.campbellsci.com/documents/eu/manuals/tdr100%20-%20439.pdf (accessed on 16 June 2023).
- Bogena, H. SoilNet. Available online: https://www.fz-juelich.de/en/ibg/ibg-3/forschung/terrestrial-observation-platforms/soilnet (accessed on 15 May 2023).
- Qu, W.; Bogena, H.R.; Huisman, J.A.; Vereecken, H. Calibration of a Novel Low-Cost Soil Water Content Sensor Based on a Ring Oscillator. Vadose Zone J. 2013, 12, vzj2012.0139. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. JOSS 2019, 4, 1686. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Posit Team. RStudio: Integrated Development Environment for R; Posit Software, PBC: Boston, MA, USA, 2023. [Google Scholar]
- Roth, K.; Schulin, R.; Flühler, H.; Attinger, W. Calibration of time domain reflectometry for water content measurement using a composite dielectric approach. Water Resour. Res. 1990, 26, 2267–2273. [Google Scholar] [CrossRef]
- Robinson, D.A. Measurement of the Solid Dielectric Permittivity of Clay Minerals and Granular Samples Using a Time Domain Reflectometry Immersion Method. Vadose Zone J. 2004, 3, 705–713. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
Manufacturer | Sentek | Campbell Scientific | TRUEBNER | Campbell Scientific | TRUEBNER |
---|---|---|---|---|---|
Sensor name | Drill&Drop | SoilVUE10 | SMT500 | CS610 (TDR100) | SMT100 (SoilNet) |
Quantity | 3 | 3 | 3 | 18 | 18 |
Type | Multi-depth | Multi-depth | Multi-depth | Single depth | Single depth |
Measurement technology | FDR | TDR | TDR | TDR | TDT |
Measured variables | T, SWC, EC (optional) | T, , SWC, EC | SWC | SWC, EC | T, , SWC |
Sensor length (~cm) | 60 | 55 | 50 | 30 | 20 |
Depth range centers (cm) | 5, 15, 25, 35, 45, 55 | 5, 10, 20, 30, 40, 50 | 5, 15, 25, 35, 45 | 5, 15, 25, 35, 45, 55 | 5, 15, 25, 35, 45, 55 |
Net unit price (~€) | 800 | 1600 | prototype | 250 + multiplexer + TDR100 | 100 + SoilNet |
Sensor | Depth | Slope | R-Squared | Difference | |||
---|---|---|---|---|---|---|---|
Measured | Corrected | Measured | Corrected | Slope | R-Squared | ||
Drill&Drop | 5 | −0.019 | −0.010 | 1.00 | 0.98 | 0.009 | −0.02 |
15 | −0.021 | −0.012 | 1.00 | 0.99 | 0.009 | −0.01 | |
25 | −0.023 | −0.014 | 1.00 | 0.99 | 0.009 | −0.01 | |
35 | −0.023 | −0.014 | 1.00 | 1.00 | 0.009 | 0.00 | |
45 | −0.025 | −0.016 | 1.00 | 0.99 | 0.009 | −0.01 | |
55 | −0.024 | −0.015 | 1.00 | 0.99 | 0.009 | −0.01 | |
Avg. | −0.022 | −0.014 | 1.00 | 0.99 | 0.009 | −0.01 | |
SoilVUE10 | 5 | −0.004 | 0.007 | 0.69 | 0.90 | 0.011 | 0.21 |
15 | −0.005 | 0.005 | 0.83 | 0.81 | 0.010 | −0.02 | |
25 | −0.003 | 0.008 | 0.71 | 0.93 | 0.011 | 0.22 | |
35 | −0.005 | 0.007 | 0.87 | 0.93 | 0.012 | 0.06 | |
45 | −0.005 | 0.006 | 0.89 | 0.92 | 0.011 | 0.03 | |
55 | −0.005 | 0.006 | 0.81 | 0.86 | 0.011 | 0.05 | |
Avg. | −0.005 | 0.007 | 0.80 | 0.89 | 0.011 | 0.09 | |
SMT500 | 5 | −0.001 | 0.011 | 0.02 | 0.81 | 0.012 | 0.79 |
15 | 0.000 | 0.012 | 0.02 | 0.94 | 0.012 | 0.92 | |
25 | −0.002 | 0.011 | 0.41 | 0.96 | 0.013 | 0.55 | |
35 | −0.006 | 0.005 | 0.84 | 0.82 | 0.011 | −0.02 | |
45 | −0.002 | 0.010 | 0.46 | 0.94 | 0.012 | 0.48 | |
Avg. | −0.002 | 0.010 | 0.35 | 0.89 | 0.012 | 0.54 | |
SMT100 | 25 | −0.011 | −0.001 | 0.98 | 0.42 | 0.010 | −0.56 |
45 | −0.009 | 0.001 | 0.99 | 0.70 | 0.010 | −0.29 | |
Avg. | −0.010 | 0.000 | 0.98 | 0.56 | 0.010 | −0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieberding, F.; Huisman, J.A.; Huebner, C.; Schilling, B.; Weuthen, A.; Bogena, H.R. Evaluation of Three Soil Moisture Profile Sensors Using Laboratory and Field Experiments. Sensors 2023, 23, 6581. https://doi.org/10.3390/s23146581
Nieberding F, Huisman JA, Huebner C, Schilling B, Weuthen A, Bogena HR. Evaluation of Three Soil Moisture Profile Sensors Using Laboratory and Field Experiments. Sensors. 2023; 23(14):6581. https://doi.org/10.3390/s23146581
Chicago/Turabian StyleNieberding, Felix, Johan Alexander Huisman, Christof Huebner, Bernd Schilling, Ansgar Weuthen, and Heye Reemt Bogena. 2023. "Evaluation of Three Soil Moisture Profile Sensors Using Laboratory and Field Experiments" Sensors 23, no. 14: 6581. https://doi.org/10.3390/s23146581
APA StyleNieberding, F., Huisman, J. A., Huebner, C., Schilling, B., Weuthen, A., & Bogena, H. R. (2023). Evaluation of Three Soil Moisture Profile Sensors Using Laboratory and Field Experiments. Sensors, 23(14), 6581. https://doi.org/10.3390/s23146581